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Figure 1: Illustration of the recursive resonance treatment in a top-decay system.

non-interleaved treatments, these scales set the upper kinematic limits for the showers that take
place inside each of the resonance-decay systems. These showers do not involve recoils to any
partons outside of the respective resonance-decay system, hence they preserve the total invariant
mass of it and thereby also the shape of its Breit-Wigner distribution. The new aspect is the
introduction of the scales Q

2
t!bW

and Q
2
W!qq̄0 , which are of order the corresponding widths,

below which each of the resonance-decay systems are merged into their production system(s).
Extending eq. (1) to include interleaved resonance decays, it becomes:
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where it is understood that the ISR+FSR term includes a sum over QED and QCD radiators,
and similarly the RES term includes a sum over decayers.

Di↵erent from conventional interleaved parton-shower and MPI kernels, we do not include
the term dP

RES
/dQ

2 in the Sudakov factor. This is because the probability density expressed
by the Breit-Wigner distribution is already unitary and contains its own infinite-order resum-
mation. In other words: if a resonance is produced, its decay happens once, and once only; there
is no need for a Sudakov-style resummation of it. Due to the interleaving with in particular the
EW shower, there is, however, a finite probability (given by the EW Sudakov factor) that the
resonance will undergo one or more EW branchings before it gets a chance to decay. We return
to this in sec. 3.
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Figure 1. An illustration of a 2e+2e� configuration where two pairs of nearby electron-positron
are moving into roughly opposite directions. The blue lines indicate antennae with positive sign
while the orange lines indicate antennae with negative signs. In this scenario the contributions to
the eikonal factor spanned between the pairs largely cancel, leaving only the positive contribution
inside the pairs.

to implement in a shower using the usual Sudakov veto algorithm [25–27]. Competing trial
emissions are generated in every sector using the appropriate local transverse momentum.
An additional veto is included that checks the condition imposed by the step function in
eq. (3.3).

This procedure in fact orders emissions with ordering variable

Q2 = min
�
Q2

xy

�
, (3.4)

which has the required property of ensuring that all soft and collinear regions are contained
in the limit Q2

! 0, while still allowing for the use of regular 2 ! 3 shower kinematics.
However, this algorithm may become prohibitively expensive in situations where the number
of charged particles in an event grows rapidly.

3.2 Pairing Algorithm

To tackle the large computational cost of the above algorithm, the parton-shower approxi-
mation eq. (2.7) may instead be replaced by
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2
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2. (3.5)

The sum now runs over pairings [x, y] that have identical but opposite charge Q[x,y].
Eq. (3.5) trivially reduces to the correct collinear limits, but only contains a subset of
eikonal factors. By choosing a suitable method to pair up the charges, the missing in-
terference structure may however be approximated. To illustrate how this may be done,
Figure 1 shows a configuration of charges consisting of two boosted e+e� pairs moving in
opposite directions in space. In this situation, one pairing performs much better than the
other. Since the components of the pairs move in roughly the same direction, the charges
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1. Types of (QED) Showers

2Note: this is (intentionally) oversimplified. Many subtleties (recoil strategies, gluon parents, initial-state partons, and mass terms) not shown.
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Beyond 2-body Systems: QED Multipoles
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๏PYTHIA QED 
๏ Determines a “best” set of dipoles. No genuine multipole effects. 
๏ I.e., interference beyond dipole level only treated via “principle of maximal screening” 
๏ Works as a parton shower evolution (+ MECs) ➤ interleaved with QCD, MPI, …  

๏YFS QED [Yennie-Frautschi-Suura, 1961 ➤ several modern implementations] 
๏ Allows to take full (multipole) soft interference effects into account 
๏ “Scalar QED”; no spin dependence. 
๏ I.e., starts from purely soft approximation; collinear terms not automatic 
๏ Is not a shower; works as pure afterburner, adding a number of photons to a final state with 

predetermined kinematics; no interleaving 

๏VINCIA QED [Kleiss-Verheyen, 2017 ➤ Brooks-Verheyen-PS, 2020] 
๏ Allows to take full (multipole) soft interference effects into account 
๏ Not limited to scalar QED; includes spin dependence 
๏ I.e., starts from antenna approximation; including collinear terms 
๏ Is a shower; works as a parton shower evolution; can be interleaved (+ MECs).



QED Multipole Radiation Patterns
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๏Example: Quadrupole final state (4-fermion: )e+e+e−e−
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Figure 1. An illustration of a 2e+2e� configuration where two pairs of nearby electron-positron
are moving into roughly opposite directions. The blue lines indicate antennae with positive sign
while the orange lines indicate antennae with negative signs. In this scenario the contributions to
the eikonal factor spanned between the pairs largely cancel, leaving only the positive contribution
inside the pairs.

to implement in a shower using the usual Sudakov veto algorithm [25–27]. Competing trial
emissions are generated in every sector using the appropriate local transverse momentum.
An additional veto is included that checks the condition imposed by the step function in
eq. (3.3).

This procedure in fact orders emissions with ordering variable

Q2 = min
�
Q2

xy

�
, (3.4)

which has the required property of ensuring that all soft and collinear regions are contained
in the limit Q2

! 0, while still allowing for the use of regular 2 ! 3 shower kinematics.
However, this algorithm may become prohibitively expensive in situations where the number
of charged particles in an event grows rapidly.

3.2 Pairing Algorithm

To tackle the large computational cost of the above algorithm, the parton-shower approxi-
mation eq. (2.7) may instead be replaced by
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2. (3.5)

The sum now runs over pairings [x, y] that have identical but opposite charge Q[x,y].
Eq. (3.5) trivially reduces to the correct collinear limits, but only contains a subset of
eikonal factors. By choosing a suitable method to pair up the charges, the missing in-
terference structure may however be approximated. To illustrate how this may be done,
Figure 1 shows a configuration of charges consisting of two boosted e+e� pairs moving in
opposite directions in space. In this situation, one pairing performs much better than the
other. Since the components of the pairs move in roughly the same direction, the charges

– 5 –

Soft Photon Emission:
[Dittmaier, 2000]

Opposite-charge pairs ➤ positive terms
Same-charge pairs ➤ negative terms



What’s the problem?
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Figure 1. An illustration of a 2e+2e� configuration where two pairs of nearby electron-positron
are moving into roughly opposite directions. The blue lines indicate antennae with positive sign
while the orange lines indicate antennae with negative signs. In this scenario the contributions to
the eikonal factor spanned between the pairs largely cancel, leaving only the positive contribution
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Why was this not done as a shower before?  
The orange terms are negative ➤ negative weights (+ big cancellations) 

YFS is able to get around that by not being formulated as a shower.  
Utilises that the sum is always non-negative.
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What does VINCIA do differently?
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Sectorize phase space: for each possible photon emission kinematics , find the 2 
charged particles with respect to which that photon is softest ➤ “Dipole Sector” 

Use dipole kinematics for that sector, but sum all the positive and negative 
antenna terms (w spin dependence) to find the coherent emission probability. 
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Further Details
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๏Antenna phase-space factorisation is exact, also for massive particles 
•+ Universal mass corrections are included in the eikonals 
•➤ Should have extremely faithful representation of “dead cone” effect (radiation from 
massive particles strongly damped for ) 

๏Also automatically includes  splittings (not in PHOTOS? YFS?) 

๏➤ First steps towards application of VINCIA QED to Hadron Decays  
•Honours project of Giacomo Morgante (Monash, 2023, in collaboration with Warwick) 

๏+ Can incorporate Matrix-Element Corrections 
•Not implemented yet. Techniques known; worked out focusing on QCD 
•Will affect tails of hard radiation (process-dependent non-singular terms), so this is 
potentially an important still missing feature. Also: Form Factors, VMD contributions, BRs, …  

๏+ Can be interleaved with event evolution, e.g., with Resonance Decays

θγ ≲ E/m

γ → e+e−, μ+μ−, …

[Gehrmann-de Ridder, Ritzmann, PS, 2012]

[Giele, Kosower, PS, 2011, + more recent]



2. How does a process with unstable particles radiate?
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๏First step = factorise production and decay(s) 
•Treat production as if all produced particles were stable 
•

Q
ED

 d
ip

ol
e

• Recoil effects do not change the invariant mass of each particle 
• => Preserves the Breit-Wigner shape

“Radiation in Production”

Charged 

particle

Note: for a c or b hadron, 
PYTHIA will do QED radiation 

off the heavy quark  

From the production scale of 
the quark down to the quark 

QED cutoff 

TimeShower:pTminChgQ  
( = 0.5 GeV )



Radiation in Decays
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๏Conventional “sequential” treatment 
•Treat each decay (sequentially) as if alone in the universe 

QED tripole

⊗

W+

t

b
w =

−2
9

w =
2
3

w =
1
3

• Shower explicitly preserves total invariant mass inside each system 
• => Preserves the Breit-Wigner shape



• Question: 
• What about radiation at energies   (and )?Eγ ≲ Γt Eγ ≲ ΓW

Radiation in Decays

10

๏Conventional “sequential” treatment 
•Treat each decay (sequentially) as if alone in the universe 

QED tripole

⊗

W+

t

b
w =

−2
9

w =
2
3

w =
1
3



Beyond the Narrow-Width Limit
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•What does a long-wavelength photon see? 
๏ It should not be able to resolve the (short-lived) intermediate 

state

PRODUCTION

⊗

W+

t

b

⊗

w =
2
3

• ➤ Expect interference between 
decay(s) 

• For wavelengths λ ≳
ℏc
Γ

W−

wbW+ =
1
3

wWW = 1

wW−b̄ =
1
3

wW+b̄ =
−1
3

wbW− =
−1
3

wbb̄ =
1
9

QED 
quadrupole

Should affect radiation spectrum, for energies    
+ Interferences and recoils between systems => non-local BW modifications

Eγ ≲ Γ
b̄



Interleaved Resonance Decays (VINCIA)
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๏Overlap between EW shower and resonance decays
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Figure 1: Illustration of the recursive resonance treatment in a top-decay system.

non-interleaved treatments, these scales set the upper kinematic limits for the showers that take
place inside each of the resonance-decay systems. These showers do not involve recoils to any
partons outside of the respective resonance-decay system, hence they preserve the total invariant
mass of it and thereby also the shape of its Breit-Wigner distribution. The new aspect is the
introduction of the scales Q

2
t!bW

and Q
2
W!qq̄0 , which are of order the corresponding widths,

below which each of the resonance-decay systems are merged into their production system(s).
Extending eq. (1) to include interleaved resonance decays, it becomes:
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where it is understood that the ISR+FSR term includes a sum over QED and QCD radiators,
and similarly the RES term includes a sum over decayers.

Di↵erent from conventional interleaved parton-shower and MPI kernels, we do not include
the term dP

RES
/dQ

2 in the Sudakov factor. This is because the probability density expressed
by the Breit-Wigner distribution is already unitary and contains its own infinite-order resum-
mation. In other words: if a resonance is produced, its decay happens once, and once only; there
is no need for a Sudakov-style resummation of it. Due to the interleaving with in particular the
EW shower, there is, however, a finite probability (given by the EW Sudakov factor) that the
resonance will undergo one or more EW branchings before it gets a chance to decay. We return
to this in sec. 3.
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where it is understood that the ISR+FSR term includes a sum over QED and QCD radiators,
and similarly the RES term includes a sum over decayers.

Di↵erent from conventional interleaved parton-shower and MPI kernels, we do not include
the term dP
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/dQ

2 in the Sudakov factor. This is because the probability density expressed
by the Breit-Wigner distribution is already unitary and contains its own infinite-order resum-
mation. In other words: if a resonance is produced, its decay happens once, and once only; there
is no need for a Sudakov-style resummation of it. Due to the interleaving with in particular the
EW shower, there is, however, a finite probability (given by the EW Sudakov factor) that the
resonance will undergo one or more EW branchings before it gets a chance to decay. We return
to this in sec. 3.
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Idea: apply this to Hadron Decays + QED 
=> Sophisticated Model of interplay between radiation and 

decays (finite-width effects, beyond NWA)

Brooks, PS, Verheyen, 

SciPost Phys. 12 (2022) 3, 101 

[arXiv:2108.10786]
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Hadronic resonances
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๏Among SM elementary resonances, we always have  

•

E.g., Higgs extremely narrow. Even W, Z, top have  

๏Hadron sector is much richer! 
•Strong decays => Relatively large widths  

๏

E.g. for  meson,  

•EM decays => Intermediate widths 
•Weak decays => Small widths 
•Size of phase spaces also matter (sometimes a lot!) 

๏➤ Plenty of motivation for investigating the effects of applying the idea of 
interleaved resonance decays to hadron decays 

•As usual, manpower / time are the main issues

Γ/M ≪ 1
Γ
m

∼
𝒪(100 GeV)
𝒪(1 GeV)

∼ 1 %

ρ
Γ(ρ)
mρ

∼
150 MeV
770 MeV

∼ 20 %
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We emphasise that, at the current stage, this proposal can only be considered a heuristi-
cally motivated paradigm. Applying the strong-ordering principle to finite-width propagators
produces a kind of forced marriage between two di↵erent all-orders summations, the self-energy
Breit-Wigner one, and the LL bremsstrahlung one. It captures the basic feature that radia-
tion at frequencies below the resonance width should be suppressed, and we therefore consider
it of phenomenological interest to explore its consequences. Should it become relevant to the
community, a more formal mathematical investigation would be welcome.

Note also that the systematic inclusion of non-resonant e↵ects would require future exten-
sions of matching strategies, beyond the scope of this paper to explore.

A final point left for possible future investigations is that resonances with low o↵-shellnesses
can in principle persist to arbitrarily low scales. This raises the question whether, e.g., top
quarks that are assigned o↵-shellness values less than the infrared shower cuto↵ (or less than
⇤QCD) should be allowed to hadronise.

2.2 Summary of Consequences

To summarise, the main consequences of the interleaving of resonance decays with the rest of
the perturbative evolution are:

• Due to the interleaving, unstable resonances e↵ectively disappear from the evolution at
an average scale Q ⇠ �. They will therefore not be able to act as emitters or recoilers for
radiation below that scale; only their decay products can do that.

• After the resonance has disappeared, recoils to partons originating outside of the decay
system are in principle allowed, and may distort the Breit-Wigner shape. In practice, such
recoil e↵ects are still expected to be relatively small, for several reasons. Firstly, the fact
that the interleaving only “kicks in” below the o↵shellness scale limits any out-of-resonance
recoil e↵ects (e.g., in terms of p? kicks) to be smaller than that scale. Secondly, in decays
of QCD colour singlets, such as Z and W bosons, there are no leading-colour (LC) dipoles
to any partons outside of the decay system and hence no out-of-resonance QCD recoils
at all. Even top-quark decays only involve a single such connection, corresponding to the
colour flowing through the decay. Analogous arguments also apply to QED radiation,
with ↵s ! ↵EM and the colour of the resonance replaced by its overall electric charge.

• With the dynamical choice of decay scale, highly o↵-shell particles disappear from the
evolution at higher evolution scales than ones nearer the pole mass value, translating to
an increasing distortion of the resonance shape further away from the pole. This roughly
corresponds to the notion of strong ordering in the rest of the evolution.

3 Electroweak Showers

In this section, we discuss the implementation of electroweak radiation in the Vincia parton
shower. The realization in Vincia draws heavily from the formalism set out in [14]. We provide
a brief summary of the common points here and discuss the adjustments that have been made
to assimilate it with the Vincia QCD shower. A comprehensive description of the QCD shower,
including details like its antenna functions, exact phase space factorization and kinematic maps
may be found in [5, 39, 40].

Vincia’s QCD shower is based on the antenna subtraction formalism [41, 42] and allows for
the evolution of states with definite helicity [40, 43, 44]. This propery is especially important
in the electroweak sector due to its chiral nature [13, 14]. However, it does not equate to a
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corresponds to the notion of strong ordering in the rest of the evolution.

3 Electroweak Showers

In this section, we discuss the implementation of electroweak radiation in the Vincia parton
shower. The realization in Vincia draws heavily from the formalism set out in [14]. We provide
a brief summary of the common points here and discuss the adjustments that have been made
to assimilate it with the Vincia QCD shower. A comprehensive description of the QCD shower,
including details like its antenna functions, exact phase space factorization and kinematic maps
may be found in [5, 39, 40].

Vincia’s QCD shower is based on the antenna subtraction formalism [41, 42] and allows for
the evolution of states with definite helicity [40, 43, 44]. This propery is especially important
in the electroweak sector due to its chiral nature [13, 14]. However, it does not equate to a

7
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masses instead of � functions, as well as options for running widths �(Q2) instead of constant
values computed at the pole, an extreme example of the latter being accounting for the change
in the Z line shape above the tt̄ threshold.

However, the production and decay of the resonance is still treated separately, without
accounting for any (perturbative) interference e↵ects between them beyond colour conservation
and, in some cases, spin correlations. We refer to such treatments as Breit-Wigner-improved
pole apprxomations (BWPA).

For example, in both Pythia and Herwig, a hard process like gg ! tt̄ (with independently
selected Breit-Wigner distributed masses for both tops) is first subjected to both initial- and
final-state showers starting at the evolution-scale maximum defined by the hard process and
ending at the infrared shower cuto↵. After this, each of the top-decay processes, t ! bW , are
subjected to an internal “resonance shower”. The latter is done in a way that preserves the
invariant mass of the resonance-decay system so that the Breit-Wigner shape of the decaying
top quark is preserved (i.e., there are no momentum exchanges with any partons outside of the
top-decay system), again only stopping when the infrared shower cuto↵ is reached. Finally the
W decay systems are showered similarly.

The implicit assumption is that interference between radiation emitted in each of these stages
(top production, top decay, and W decay) is negligible. The fundamental reason why this is a
good assumption, at least for perturbative QCD radiation o↵ SM particles, is that none of the
SM resonances (top, Higgs, W , and Z bosons) have widths that are much larger than the shower
cuto↵ for QCD radiation, Qcut ⇠ 1 GeV, hence the region of the phase space for perturbative
QCD shower evolution over which interference e↵ects could be relevant is very small. The
strong suppression of such interference e↵ects have also been verified by explicit theoretical and
phenomenological studies e.g. of e

+
e
�

! W
+
W

� [24] and e
+
e
�

! tt̄ [10, 25–27].
Nevertheless, the experimentally achievable statistical precision on top-quark mass measure-

ments at hadron colliders has now reached the order of a few hundred MeV [28–31], making it
important to evaluate (and preferably control) QCD uncertainties at that level or better. This
has catalysed a reassessment of possible non-perturbative uncertainties such as colour recon-
nections [32–34], and also of the e↵ects of soft perturbative radiation [35,36] and of finite-width
e↵ects in fixed-order matrix elements matched to parton showers [37, 38]. So far, the latter
e↵orts have focused mainly on improvements to the treatment of finite-width e↵ects on the
fixed-order side, and on how to match these consistently with showers, without substantial
modifications to the showers themselves.

Here, we note that the BWPA is, strictly speaking, not quite consistent with the strong-
ordering condition in parton showers. Strong ordering expresses the simple fact that the leading
singularity structures of QCD (and QED) amplitudes correspond to Feynman diagrams in which
each successive propagator has a much smaller virtuality than the preceding one (or next one, for
initial-state legs). Physically, this reflects a formation-time principle; short-lived fluctuations do
not have time to emit low-frequency radiation. However, for unstable particles in the BWPA, one
can have precisely the situation that a particle which has nominally been assigned an invariant
mass quite di↵erent from the pole value does emit low-frequency radiation. In the corresponding
Feynman amplitudes, there are then two (or more) o↵-shell propagators, which ought to be
suppressed relative to amplitudes in which the low-frequency radiation is emitted after the
decay. This leads us to consider an interleaved paradigm for showers o↵ resonance-production
+ decay processes, in which resonance decays are inserted in the overall event evolution when
the perturbative evolution scale reaches a value of order the width of the resonance. [Should

we mention here that these situations occur more often with EW corrections in the

shower?]RV

4H. Brooks, P. Skands, R. Verheyen, SciPost Phys. 12 (2022) 3, 101 [arXiv:2108.10786]
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Figure 3: Vincia FSR branchings as functions of ⇠ = ln p
2
?, for (left) each of the three radiation

classes described in the text, and (right) the spectrum summed over all three components.
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