
JupyterHub on Kubernetes 
as a platform for developing secure 

shared environment 
for data analysis at MAX IV

Andrii Salnikov, 
Zdenek Matej, Dmitrii Ermakov, Jason Brudvik

CS3 2024, CERN

Mail To: andrii.salnikov@maxiv.lu.se

mailto:andrii.salnikov@maxiv.lu.se?subject=CS3%20Jupyterhub


• Container images with pre-defined and 

custom kernels 

• Kubernetes cluster 

• as a resource pool:

• Moderate CPU

• Large RAM

• V100/A100 GPUs

• as a deployment platform:

• review/prod/next lifecycle

• CI testing of notebook images

• as a runtime environment

• Shared service for staff and researchers

• Remote-desktop style experience

• Resources overcommit

Andrii Salnikov, JupyterHub@MAX IV, CS3 2024 2

Interactive data analysis environment



Goals and technical requirements

• Key objective: fully unprivileged container environment that 
operates seamlessly with existing LDAP user credentials

• Functional Requirements:
• Integration with MAX IV storage systems (home, group, data)

• Run any notebook images without modifications

• Ensure available resources visibility

• Efficient sharing of available GPU resources between users

• Observability of usage metrics

• Operation Requirements:
• Zero to JupyterHub with Kubernetes Helm Chart without modifications

• Just custom hooks and proper values.yaml

Andrii Salnikov, JupyterHub@MAX IV, CS3 2024 3

https://zero-to-jupyterhub.readthedocs.io/en/latest/


Existing LDAP credentials

Andrii Salnikov, JupyterHub@MAX IV, CS3 2024 4

• UID/GIDs from Token 

to securityContext

• NSS data sync from 

LDAP to configMap to 

mount inside container

• Environment variables

to define HOME
directory, etc

• Wrapper startup script

to bootstrap 

environment

• Storage mounts are 

simply defined in the 

values.



LXCFS: Resources visibility

Andrii Salnikov, JupyterHub@MAX IV, CS3 2024 5

• LXCFS is a FUSE 

filesystem offering overlay 

files for cpuinfo, meminfo, 

uptime, etc

• Deployed as DaemonSet

on Kubernetes level

• Visible CPU and RAM 

container limits

• Mounted to /proc and 

/sys in pre_spawn hook

• Defining additional 

environment variables in 

startup scripts

https://linuxcontainers.org/


GPU sharing: MortalGPU development

• Kubernetes device plugin for GPU memory overcommit, while 
maintaining allocation limit per GPU workload - the approach used for 
sharing RAM on Kubernetes.

• Fork of MetaGPU with development focus on interactive workloads 
run by mortals (with operations support by mortal admins)

• Provides:
• Device Plugin: represent GPU (or MIG partition) with configurable number of 

meta-devices (e.g. 320 of mortalgpu/v100)

• Memory enforcement based on the usage monitoring data

• Kubernetes-aware observability in general and container-scoped 
resource usage in particular:

• mgctl tool and Prometheus exporter

Andrii Salnikov, JupyterHub@MAX IV, CS3 2024 6

https://artifacthub.io/packages/helm/mortalgpu/mortalgpu


Jupyterhub with MortalGPU

Andrii Salnikov, JupyterHub@MAX IV, CS3 2024 7

• Kubernetes DaemonSet

• GPU RAM resource 

requests and limits, 

defined the same way as 

RAM

• Multiple MortalGPU 

resources available 

(different GPUs and 

partitions)

• Wrapper over mgctl to 

provide nvidia-smi
output for container 

processes only 



Andrii Salnikov, JupyterHub@MAX IV, CS3 2024 8

Compute Instance profiles and RBAC



• KubeSpawner is capable 

of running additional 

containers in the user Pod

• Isolated walltime

countdown container 

terminating user server via 

JupyterHub API 

• Using the JupyterHub RBAC

feature

• Developed UI extension to 

show values to end-user

Andrii Salnikov, JupyterHub@MAX IV, CS3 2024 9

Extra containers = extra features
Walltime enforcement

https://jupyterhub.readthedocs.io/en/stable/rbac/index.html


Andrii Salnikov, JupyterHub@MAX IV, CS3 2024 10

Use-case: Nordugrid ARC Client

• PoC: Small grid for 
transparent HPC usage

• ARC with OAuth2 JWT 
tokens auth:

• Map to self at MAX IV 
resources

• Map to pool on external 
resources

• Additional challenge: 
existing data sharing to 
external sites with JWT 
auth, following user 
permissions

Idea: use JupyterHub as ”oidc-agent”



• KeyCloak Authenticator to 
refresh access tokens

• Isolated token-helper 
container with privileges to 
read auth_state

• Using the Jupyterhub RBAC

feature

• API to provide only Access 
Tokens to JupyterLab
container 
• wrapper to use in ARC CLI 

transparently

Andrii Salnikov, JupyterHub@MAX IV, CS3 2024 11

Extra containers = extra features
”OIDC-agent” for ARC

https://github.com/swan-cern/jupyterhub-extensions/tree/master/KeyCloakAuthenticator
https://jupyterhub.readthedocs.io/en/stable/rbac/index.html


KubePie: sharing existing data over https

Andrii Salnikov, JupyterHub@MAX IV, CS3 2024 12

• Idea: ”own” web server for each user with the correct UID/GIDs

• Sounds crazy? But we do run such Pods for each user in JupyterHub!

• KubePie is harnessing Kubernetes' scalability and deployment 

capabilities by running, managing and securing web servers for 

every user

• KubePie is strictly relying on OpenID Connect flow or OAuth2 

bearer tokens when it comes to the user identification

• OAuth2 used in ARC PoC for data transfers 

• Claims-based user-mapping during Pod instantiation (admission)

• Other auth credentials accessible via OIDC:

• WebDAV with S3-like credentials is implemented as an example

https://artifacthub.io/packages/helm/kubepie/kubepie


KubePie: Baking process

Andrii Salnikov, JupyterHub@MAX IV, CS3 2024 13

KubePie@MAX IV 
is running on the 
Data Acquisition 

Kubernetes Cluster

https://artifacthub.io/packages/helm/kubepie/kubepie


Conclusions

• Extensibility of both JupyterHub and Kubernetes allows to build data 
analysis platforms, matching organization needs in functionality and 
security.

• LXCFS on the Kubernetes brings allocated resources visibility to 
both interactive and batch containerized workloads.

• Flexible and observable GPUs sharing with MortalGPU enriches the 
interactive shared environments with CUDA capabilities.

• Compute Instance profiles and RBAC extends the usage patterns of 
the shared platform, improving the end-user experience.

• Additional containers in the running Pod open a way to securely add 
features beyond the usual JupyteHub capabilities.

Andrii Salnikov, JupyterHub@MAX IV, CS3 2024 14



Thank you for attention!

Andrii Salnikov, JupyterHub@MAX IV, CS3 2024 15Mail To: andrii.salnikov@maxiv.lu.se

Source code and 
deployment configuration 

can be found on 
gitlab.com

We are working 
towards establishing 

similar deployment for 
providing EOSC service 
as Open Data analysis 

platform

Ask me about:

mailto:andrii.salnikov@maxiv.lu.se?subject=CS3%20Jupyterhub
https://gitlab.com/MAXIV-SCISW/JUPYTERHUB/jupyterhub-kubernetes
https://gitlab.com/MAXIV-SCISW/JUPYTERHUB/jupyterhub-kubernetes

