
On behalf of the SWAN team

https://cern.ch/swan

Evolving SWAN through
simplification
Diogo Castro

March 12th, 2024
CS3 2024 - Cloud Storage Synchronization and Sharing

A reminder on SWAN

2

Integrating (CERN) services

3

Software

Storage

Infrastructure

UI/Core

Analysis platforms

Compute
§ Service for Web-based Analysis

§ Created in 2016
§ Used by ~300 people daily

Storage

﹥ All the data our users need for their
analysis
§ CERNBox as home directory
§ Experiment repositories, projects, open

data, …
§ (EOS Fuse client)

﹥ Sync&Share
§ Files synced across devices and the Cloud
§ Simple collaborative analysis

4

sync

share

Software

﹥ Software distributed through CVMFS
§ ”LCG Releases” - pack a series of

compatible packages
§ Reduced Docker Images size
§ Lazy fetching of software

﹥ Possibility to install libraries in user cloud
storage
§ Good way to use custom/not mainstream

packages
§ Configurable environment

5

custom user env (optional)

thin layer (not user defined)

main software source

LCG Release

CERN
Software

User
Software

Jupyter
modules

Latest updates

6

Project priorities in 2023

§ Conclude migration to Kubernetes
§ Ensure scalability1

§ Conclude migration to Jupyterlab2
§ Migration to Alma 9 / simplification of current docker images
§ Update to latest versions of upstream3

§ Conclude integration of more CERN services4
§ New ways to manage software
§ Binder5

7

Migration to Kubernetes

﹥Migration campaign finished on March 5th, 2024
§ All physical nodes have been removed from the service
§ Improved operations and a single source of truth for metrics
§ Better UX for users (aligned set of features, single point of entry)

﹥ Lessons learned on the way
§ Some components' maturity had to stabilize
§ Need to gain operational expertise
§ Physical machines were used as a fallback to disruptive updates

﹥ Further improvements (in progress)
§ Blue/Green deployment for cluster (disruptive) updates
§ DevOps automated tools

8

1

GPU access

﹥ SWAN allows to attaching a GPU to a user session
§ Feature of the new SWAN k8s deployment, now available to anyone
§ 18 GPUS (Tesla T4)

﹥ New project: CERN IT-wide resources sharing
§ Sharing all GPUs across different services in a pool
§ Easy scalability in case of need (e.g., for tutorials)

9

1

GPU partitioning

﹥ A new NVIDIA GPU operator deployed
§ Supports newer GPU cards, including

partitionable GPUs, i.e. Multi-Instance GPUs
(MIG is viable with A100s, that are scarce at
CERN)

﹥With GPU partitioning, users have exclusive
access to one GPU fragment
§ No interferences

﹥ Partitioning GPUs allows for resource
sharing and better resource utilization
§ E.g. assign one fragment per participant of a

tutorial

10

1

https://www.nvidia.com/en-us/technologies/multi-instance-gpu/

Migration to JupyterLab

﹥ Deployed Jupyterlab v4
§ Extensions migrated to the new version

﹥ Available as beta UI
§ Collection of user feedback underway
§ Users can use the old UI in parallel

﹥ Deeper Sync&Share integration
§ Ongoing integration with CERNBox using the CS3 APIs

Jupyterlab extension (CS3Mesh project)
§ Full sharing and collaborative capabilities
§ Currently migrating to Lab v4 and making UI production

ready

11

2

Migration to Alma 9

﹥ Key SWAN container images migrated from
CERNCentOS7 to Alma9
§ User session image (Jupyter server)
§ JupyterHub image

﹥ User images rewritten from scratch
§ Like upstream images, but on top of Alma 9

instead of Ubuntu
§ Same entry points and configuration options

﹥Modular components’ configuration
§ EOS, CVMFS, External resources, etc, are

independently configured on separate scripts
§ Easy to disable or add new components

12

3

B
as

e

Upstream: base-notebook

Upstream: docker-stacks-foundation

SWAN: minimum config (and branding)

CERN: Alma 9 (x86 or ARM)

SW
A

N

SWAN: EOS and CVMFS support
 SWAN Extensions

SW
A

N
@

C
ER

N

SWAN: Spark, HTCondor/Dask, HPC

Migration to Alma 9

﹥More runtime freedom
§ They can be run within

Jupyterhub (i.e. prod SWAN)
but also independently (e.g.
locally or headless in a CI)

﹥ All dependencies updated to
the latest versions
§ Some SWAN personalizations

were replaced with upstream
ones

13

3

Ke
yc

lo
ak

Au

th
en

tic
at

or

Sp
aw

ne
r

H
an

dl
er

s

C
ul

le
r

C
on

te
nt

s
M

an
ag

er

N
ot

ifi
ca

tio
ns

C
he

ck
po

in
ts

&

sh
ar

in
g

oA
ut

h
to

ke
ns

re

ne
w

Th
em

e
&

pe
rs

on
al

is
at

io
n

Sp
ar

k
m

on
ito

r
&

co
nn

ec
to

r

D
as

k
&

H
TC

on
do

r

Integration with external resources

﹥ Spark infrastructure is being updated to Alma 9
§ Coordinating with Hadoop service the updates to Alma 9 for Spark on Hadoop
§ Investigating deploying Spark on YARN using container images to streamline

the update

﹥ All Spark Jupyter extensions have been updated to Lab 4

﹥ CERN HPC integration is now in QA
§ Applications and use cases that do not fit the standard batch HTC model,

typically parallel MPI applications
§ Uses CEPH as shared storage between submission and worker nodes
§ CEPH FS integrated as PVCs in SWAN, mounted only for allowed users

14

4

Analysis facility pilot

﹥ Support interactive distributed analysis for High Energy
Physics
§ Address the future analysis needs due to foreseen increase

in data volumes.

﹥ Dask as the connector to batch resources
§ The two main HEP analysis frameworks, ROOT and coffea,

rely on Dask for running analysis distributedly

﹥ For now, it uses overcommitted “static” slots on HTCondor
§ Optimizes usage of batch resources
§ A well-stacked batch farm with a good job mix can get to

80% CPU utilization
§ Known analysis jobs potential to stack nicely with other

workloads to drive up utilization

15

4

Web portal

RDataFrame

User session
1. Submit job requests to
deploy Dask workers

2. Execute
jobs

3. Run analysis
computations

.

.

.

Analysis facility pilot

﹥ A Pilot has been approved
§ Validate demand
§ It will validate with real users its usefulness to

CERN use cases and the necessity of
improvements

﹥ Future improvements
§ Use tokens throughout the workflow (currently a

Kerberos auth is required)
§ Allow users to close the notebook UI and still be

able to retrieve the jobs’ status
§ Potentially different interactive jobs allocation

model
§ Improve custom software environment integration

16

4

Virtual environments

﹥ Project kickstarted to allow the integration of LHC Control tools in SWAN

﹥Objective: Make it easier to manage project dependencies and ensure consistent execution
across different environments
§ So that users can publish projects via Gitlab, and still recreate the environment consistently

﹥ For performance reasons, for now, environments are created locally in the container storage
§ We are investigating the feasibility of the EOS Squash FS feature to persist across sessions

﹥We will try to integrate GUI tools to help add/remove packages
§ Similar to a PoC/GSoC project presented in previous years at CS3 Conference

﹥ The integration of BinderHub is on hold for now

17

5

A note on collaboration

18

Current collaboration model for Jupyterlab

﹥ In the beginning, notebooks could not be open
in parallel
§ Conflicts would happen, especially on shared

filesystems

﹥ Now they can, and their data structures are
synchronized
§ This looks awesome!
§ But optimal usage requires sharing the same

Jupyter server and kernel (?)

﹥ Jupyterhub proposes “collaboration accounts”
instead
§ “Real-time collaboration without impersonation"

19

The problems of the current collaboration model

﹥ A shared filesystem might mean access from different Jupyter servers
§ Or even other applications altogether
§ The concurrent editing does not work fully

﹥ Collaboration requires coordination
§ This might not always be easy, especially if we don’t know who is editing on the other side…

﹥ Sharing the same server + kernel is risky
§ Full access to another user’s account, storage, and permissions on many resources
§ Collaboration accounts help, but might be harder to coordinate or integrate with deployment

﹥We’re not aware of use cases that would benefit from true concurrent editing

20

We proposed a complementary model better suited for
large scale distributed environments

Collaboration model of the CS3Mesh project

﹥ Same view as EFSS inside Jupyter
§ Access files, different mounts, shares,

versions, etc.

﹥ Sharing functionality
§ Share with users or public links
§ Same permissions everywhere

﹥ Parallel access to notebooks
§ As alternative to concurrent editing
§ Opening the same notebook without creating

conflicts (both locally or remote)
§ Execution environment independence

21

Still work in progress

https://github.com/sciencemesh/cs3api4lab

https://github.com/sciencemesh/cs3api4lab

Conclusion

22

Takeaways

﹥With more configurable options in the upstream Jupyter project, SWAN is being simplified
§ It results in a project that is better to manage and operate at CERN
§ But also easier to deploy outside of CERN
§ The new docker images and full Kubernetes deployment are examples of that

﹥ SWAN continues to work on its integration with heterogeneous and external resources
§ From GPUs to Htcondor via Dask or HPC
§ A Pilot Analysis Facility is ongoing to validate the demand and applicability to CERN use cases

﹥ The collaboration model of Jupyter would benefit from our input
§ As deployers and developers of large sync&share services/products, we have relevant know-how
§ But we need to organise bahind a single voice

23

Where to find us

﹥ Contacts
§ swan-admins@cern.ch
§ http://cern.ch/swan
§ https://swan-community.web.cern.ch/

﹥ Repository
§ https://github.com/swan-cern/

﹥ Science Box
§ (deploys the SWAN Helm Chart)
§ https://cern.ch/sciencebox

24

mailto:swan-admins@cern.ch
http://cern.ch/swan
https://swan-community.web.cern.ch/
https://github.com/swan-cern/
https://cern.ch/sciencebox

Evolving SWAN through simplification
Thank you

Diogo Castro
diogo.castro@cern.ch

25

