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Project targets

► Understand usability of GPUs for general particle transport simulation, 
seeking for potential speed up and/or usage of available GPU resource 
for the HEP simulation

● Prototype e+, e− and γ EM shower simulation on GPU, evolve to realistic use-cases

► Provide GPU-friendly simulation components
● Physics, geometry, field, but also data model and workflow

► Ensure correctness and reproducibility
● Validate the prototype against Geant4 equivalent, ensure reproducible results in all modes

► Integrate in a hybrid CPU-GPU Geant4 workflow
● Understand possible limitation in such an environment

► Understand bottlenecks and blockers limiting performance
● Estimate feasibility and effort for efficient GPU simulation

2



Development approach

► Strategy: integrate gradually features as new examples
● Possible at any time to created a library to link with experiments 

frameworks

► Build-up gradually common functionality (services)
● Infrastructure: custom containers and helpers
● Geometry: VecGeom library, adapting & developing for GPU 
● Physics: G4HepEm library, a GPU-friendly port of Geant4 EM interactions

► Portability aspects not a major priority in this project phase
● Initial study identified VecGeom as blocking issue

► Demonstrate usability in native Geant4 workflows
● Early integration to allow then optimizing a hybrid CPU-GPU workflow

► Git repository
● Initial commit in Sep 2020, O(10) contributors 
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GPU geometry:VecGeom
►  Built on top of the original VecGeom GPU/CUDA support

● C++ types re-compiled using nvcc in a separate namespace/library
● In AdePT we wrote a custom global navigation layer calling lower level VecGeom APIs

► Made several improvements for GPU support
● Developed custom optimised navigation state, single-precision support
● Moved from a simple “loop” navigator to an optimized BVH navigator
● Adopted modern CMake GPU support

► Worked on specializing the VecGeom GPU navigation support
● Portable, less complex code

► Added ability to read GDML files allowing to run with almost any 
geometry (essential for this R&D)

► Although being a working first solution, CSG-based approach seems to 
be a bottleneck on GPU

● Working on surface-based models (see discussion later)
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GPU-friendly rewrite of EM physics

► G4HepEm: compact library of EM processes for HEP
● Covers the complete physics for e−, e+ and 𝛾 particle transport
● Initialization of physics tables dependent on Geant4, but usage on GPU standalone and 

lightweight
● Excellent physics agreement between Geant4 processes and G4HepEm

► Design of library very supportive for heterogeneous simulations
● Interfaces: standalone functions without global state
● Data: physics tables and other data structures copied to GPUs
● Reusing > 95% of the code from G4HepEm for GPU shower simulation
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GPU workflow

► The GPU workflow has probably the largest impact on performance
● Very different on GPU compared to CPU, it has to be massively parallelizable

▹ AdePT ‘steps’ all active tracks at once

► Different properties to the simulation workflow of Geant4
● No “thread-local” state, everything associated with a track
● At the same time: track must be as lightweight as possible
● Data structures must not create bottlenecks (prefer atomics) 

► In AdePT we adopted so far an approach based on active track slots 
queues scheduled for per-particle kernels (see following slides)

● A “per-event” approach so far, easier to integrate in realistic simulation workflows
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Track storage
► Properties stored per track:

● Random number generator state (reproducibility requirement)
● Kinetic energy
● Position, direction, and current navigation state
● State to be preserved across steps (number-of-interaction-left, MSC properties)

► Pre-allocate arrays of tracks per particle type (array of structures)
● One for electrons, one for positrons, one for gammas
● Advantage: can call specialized kernels, potentially specialize stored properties
● Atomic counter to hand out “slots” (to allow compaction)

► Properties not stored per track:
● Particle type / PDG number (implicit from array)
● Charge, mass (can be inferred from particle type)
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Arrays of active and next tracks

► Store indices of active tracks (per particle 
type)

● Parallelize transportation kernels over these indices

► Queue indices for “next” active tracks
● Both secondaries and “surviving” tracks
● Implemented with atomic counter
● Tracks are killed by not enqueuing 

► Run transportation kernels stepping the active 
tracks

● Here track #1, #2 and #5 survive, track #4 dies, and 
track #6 and #7 are produced

► Swap ‘active’ with ‘next’ before next iteration
● Compacting unused slots now possible
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Stepping workflow
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• Can start kernels for particle types in parallel streams (transport is 
independent)

• Synchronization means overhead
• Synchronize with host once at the end of the step (stepping loop control)

• Main optimization playground
• Better work balancing between warps, reducing impact of tails, better device occupancy
• Experimenting with smaller kernels (separating discrete and continuous interactions)



Random number handling
► To assure reproducibility, RNG state needs to be associated with each 

track
● Guarantees identical results no matter the parallel execution order and kernel 

configuration
● Essential for debugging during development and production

► Need to initialize new RNG state for secondary particles
● Must only depend on parent track to guarantee reproducibility
● Can re-use RNG state of dying track in annihilation or conversion
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Random number generator: RANLUX++

► Based on the well-known RANLUX generator
● Uses the equivalent LCG and therefore faster

● Excellent statistical properties: inherited from RANLUX, only shared by MIXMAX

▹ (XORWOW used by default in cuRAND known to fail some statistical tests)

► Portable implementation available, written with GPUs in mind

●  See J. Hahnfeld, L. Moneta: A Portable Implementation of RANLUX++

► Advantage over MIXMAX: smaller state

●  Even for N = 17, the default generator in Geant4 (148 bytes of state)

●  Compared to 80 bytes for RANLUX++
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Magnetic Field: Runge-Kutta field 
propagation

► Developed Runge-Kutta integration method has also been developed using 
the Dormand-Prince 5th (’DoPri5’) order tableau which is the default method 
in Geant4

► First results with TestEm3, Bz= 3.8T
● Better than per-mille agreement in observables with helix results
● Improved handling of particles ‘stuck’ at boundaries - flip volume at boundary
● Runtime about 1.5x helix ( 98 s vs 65 s in TestEm3 3.8T test case)

► Next steps - further testing and performance evaluation
● Use semi-realistic field (simplified CMS or ACTS ‘texture’-based interpolation)



Prototype integration strategies
► Developed two integration approaches with Geant4 

application 

● ‘Region-based’ using fast simulation hooks

● ‘Global’ using custom tracking machinery

► Both allow to delegate the simulation of EM particles to 
AdePT while using Geant4 for all the hadronic physics

● AdePT as a plug-in for Geant4

► Possible to switch between full Geant4 and 
Geant4+AdePT configuration at run time 
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Prototype integration strategies

► region-based approach for delegating simulation to an 
external transport

● particle killed on the Geant4 side and passed to the other transport 
engine

● energy depositions and ‘outgoing’ (from that region) particles returned

► this follows ‘fast-simulation’ approach in Geant4
● allows the use of (most of the) existing fast-simulation hooks
● easy integration with the physics list
● ability to switch between full Geant4 and Geant4 + AdePT at runtime 

(from macro file)

► one difference:
● we buffer particles to process them together when some threshold is 

reached (or when there are no more Geant4 particles on the stack)
▹ New ‘Flush’ method added to Geant4 interface 14



Prototype integration strategies

► Geant4 specialized tracking manager approach
● based on the G4VTrackingManager interface

► AdePTTrackingManager class is attached to e-, e+, 
and gamma particle definitions inside the physics list
● those particles not being tracked by Geant4 

(anywhere), but handed over directly to AdePT

► FlushEvent method triggers the simulation on the GPU 
when some threshold is reached (or when the Geant4 
event stack is empty)
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Scoring 
► sensitive volumes marked on the GPU with a flag while 

initializing geometry
● list of sensitive volumes provided in Geant4 macro file or read from 

GDML auxiliary information

► Two mechanisms of scoring implemented
● User scoring implemented on the device

● ‘Step’ information (in sensitive volumes) transferred to the host for 
scoring

► In both cases the output looks the same regardless 
running full Geant4 or Geant4 + AdePT

● can be then processed/analysed in the same way
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Scoring ‘on the device’ 
► energy deposition per volume (per event) recorded by AdePT in 

sensitive volumes and summed up
● other types of ‘hits’ can be implement by user 
● array of energy depositions per volume is transferred to the host once the AdePT 

‘shower’ finished
● indices of volumes on GPU mapped to the Geant4 ones

► Special SensitiveDetector::ProcessHit method (overloaded) called to 
translate this array of energy deposition into Geant4 hits

► Requires dedicated ProcessHit method

► Faster for simple scoring algorithms, but not practical for complex 
ones
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Scoring ‘on the host’ 
► All ‘step’ information (for sensitive volumes) recorded on the device 

and sent to the host
► G4Step objects recreated on the host

► Existing SensitiveDetector::ProcessHits method processes those 
G4Steps and created Geant4 hits

► Some (small) overhead, but allows to reuse the existing experiments 
scoring code for any detector
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‘Outgoing’ particles

► if a particle is not to be handled by AdePT anymore (leaves AdePT 
region, energy goes below some threshold, etc) it is put in the ‘from 
device’ buffer

► after AdePT shower has finished, ‘from device’ buffer is transformed in 
Geant4 tracks and put on the Geant4 stack

● Geant4 continues the event loop to process those particles
▹ to guarantee reproducibility (also in MT) particles ‘from device’ are sorted according 

to some unique key

► event finishes when no more particles are in the AdePT buffer (‘to 
device’) and Geant4 stacks are empty
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Validation

► Validation against Geant4 
standalone is essential

● Comparisons to CPU references (in 
general Geant4-based) done for each 
added item of functionality

● Both for standalone and Geant4 
integration examples

► EM physics now fully validated
● At ‰ level in the sampling calorimeter 

test case
● Both AdePT standalone as 

Geant4-AdePT integration showing 
excellent agreement
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GPU support in VecGeom

► VecGeom: backend for Geant4 navigation
● Designed to expand the geometry modelling use cases to multi-particle workflows 

and GPU
● Intended to become the only geometry modeller to have to maintain long term

► GPU support - a CUDA port of the CPU algorithms
● Most-common Geant4 solids supported at this point
● Work done to improve several areas in the context of the GPU simulation projects 

AdePT and Celeritas
▹ memory footprint, robustness, performance, single precision
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Current VecGeom solid modeling on GPU
► Several GPU unfriendly features

● Virtual dispatch
● Recursive code (relocation)
● (Very) different branch complexity

► AdePT project: geometry complexity 
worsens performance

● GPU performance limited by the geometry model
▹ Longer stalls within warps for the same SM 

compute - divergence limiting warp-level 
concurrency

▹ Complex register-hungry code limiting the 
achievable occupancy
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Bounded surface modeling
► 3D bodies represented as Boolean 

operation of half-spaces*

● First and second order, infinite 
● Just intersections for convex primitives

▹ e.g. box = h0 & h1 & h2 & h3 & h4 & h5
● Similarities with the Orange model

▹ Evaluated Orange to start with

► Storing in addition the solid imprint 
(frame) on each surface: FramedSurface

● Similarities with detray (ACTS)
● The frame information allows avoiding to 

evaluate the Boolean expression for distance 
calculations to primitive solids
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Objectives for the surface model

► Portable GPU-friendly header library
● Algorithmic part independent on the backend, compilable with any native/portability 

compiler
● Headers templated on the precision type to allow for a single-precision mode
● Reduced set of simple surface/frame algorithms (vs. ~20 primitive solids now)

▹ Reducing divergence and register usage on the GPU

► Automatic conversion from VecGeom transient solid model
● Transparent creation of the data structures and copy to GPU
● Preserve awareness of the Geant containment feature as powerful optimization

► Target: code simplification compared to the solid model
● No virtual calls, no recursions, more work-balanced
● Better device occupancy and kernel coherence
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Conversion of existing solids

► Any solid surface can be made from predefined 
surface & frame types

● 3D transformation + pre-defined surface/frame equations 
rather than transforming equations in the global reference, for 
numerical stability

► Generated framed surfaces behave like the 
tessellations in graphics

● ‘Real’ hits allowing for faster distance reductions compare to 
the unbound approach

● Except for the Boolean solids, which cannot compute the 
frames and have to be fully logically evaluated
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Current status
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► Locate - needed only once per track

● using CSG expression, reduction per solid

► Relocate - at each boundary crossing

● frame search on common surface sides

► Distance - half-space + frame query 

(propagated point must be contained)
● using hierarchic info constraining candidates

► Safety - combine half-space + frame distances

Boolean



Non-recursive particle relocation 
► In Geant volumes can share common surfaces

● Define “common surfaces” as transition boundaries 
between volumes, pre-computed and deduplicated

● Touching volumes contribute with frames on each side

► Locating the deepest frames hit on the surface 
sides allows finding the location after crossing 
volume boundaries

● More efficient 2D linear search, involving only a limited 
set of neighbors and not all daughters of a volume

● We can add 2D optimizers to mitigate the complexity at 
this level
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Scaling for track relocation
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Non-recursive Boolean implementation
► Framed surfaces of Boolean solids 

can co-exist with non-Boolean ones 
on common surfaces 

● Linearized Boolean infix expression 
evaluation using Boolean algebra 
short-circuiting

● Tested union of up to 150 layers of disks 
subtracting a box, more exhausts CUDA 
stack space for the solid approach

► Initial implementation scaling looking 
good

● 2x slower for 5 components, 2x faster for 
50 components on GPU
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Preliminary performance

► Unit tests available for correctness checking against VecGeom solid model
● Box, tube, trapezoid, polyhedron, Boolean solids
● TestEm3 - a simple layered calorimeter made of box slabs

► Ray-tracing benchmark, working with generic GDML input (supported solids 
only)

● Testing full navigation functionality on CPU and GPU
● Validated & benchmarked against existing VecGeom solid navigators

► Results (compared to solid looping navigation) for trackML setup
● Safety computation: ~2x slower on CPU, ~2x faster on GPU
● Propagation + relocation: ~2x faster on CPU, ~6x faster on GPU
● Memory: ~1.5 kByte per “touchable” volume
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Memory mitigation
► Cannot afford to expand all touchables surfaces in memory

● Including bounding box optimizations, we can easily reach O(10) GBytes

► Adding support for the “scene” concept
● Highly replicated volumes, kept once in memory,  defining local “worlds”
● A state in this approach can be represented by a tuple: (n0, n1, .. , nm)

▹ Storing local surfaces and transformations
▹ We can constrain the maximum depth `m` to a small value, with  a huge impact on the 

memory footprint
▹ Price to pay: conversion to the touchable frame done via successive transformations

► Now fully implemented and giving quite accurate estimates of the memory 
reduction

● Main challenge: implementing scene-aware surface navigation - Done
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Memory estimation for CMS Run2 setup

► The optimal choice of volumes to be kept as 
scenes is constrained

● on the maximum scene depth, set at compilation time
▹ plot above, a depth of 3-4 allows keeping the 

memory below 100 MB
● on the minimum number of sub-hierarchy touchables

▹ for a given maximum depth, this allows to 
fine-tune the average scene depth to minimize 
the number of extra run-time matrix conversions

► The impact on navigation performance
● Seems negligible for simple setups, to be confirmed in 

complex ones 
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Integration in AdePT GPU prototype
► Optional usage of the surface model 

in AdePT example
● No relevant changes needed other than 

triggering the model conversion and the 
navigator type

► Sampling calorimeter simulation
● block of Pb + LAr box layers ( w/ constant 

Bz field)
● 10 GeV electrons shot towards the 

calorimeter along X axis

► Numerical divergence small and 
understood

● Boundary crossing relocation
33

BVH no 
BVH 
surf

no field 152s 156s

Bz=1T 194s 184s



Geometry to-do list

► Completion of the missing solid-to-surface conversion in CMS Run2 setup
● polycone, cut tube, simple extruded

► Adding the adapted BVH acceleration for searches on common surface 
candidates

● In future we may also need to reduce the search complexity within frames on common 
surfaces

► Validating the transport on CMS Run2 geometry (est. 2nd-3rd quarter 2024)
● Measuring the impact on performance (including single-precision mode)

► Completing the model with the missing solids supported by Geant4
► Migration to version 2 of VecGeom (est. by the end of 2024)

● Simplified CPU interfaces and portable surface-based GPU support
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Test tools

► Tools for benchmarking and validation
● Timers, accumulators, export of results
● Adapted to the needs found for AdePT

► Implemented in one of the integration examples
● Easier extraction of in-detail data for further analysis
● For example time spent simulating leptons inside the CMS ECAL

► Python scripts for automated testing and validation
● JSON test configurations for easy setup and sharing
● Automatic plotting of the results
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Integration with fast-simulation Hooks

► AdePT transports particles in the ECAL region

► e-, e+ and gammas are buffered before triggering a shower

► Scoring is performed on the GPU when using AdePT
● Simple scoring code as a placeholder for more complex options
● Equivalent code on CPU and GPU
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CMS Run2, electron bunches

Geant4/AdePT throughput 37

► Not a realistic benchmark from 
event/track distribution 
perspective

● ~75% of tracks transported in the 
ECAL

► Has the merit of showing how 
much the EM transport can be 
accelerated on per-detector basis



Proportion of time spent simulating leptons in the ECAL

► Measure fraction of time spent simulating 
leptons in the ECAL

► Compare original fraction with Geant4 
with improvement by AdePT
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► Speedup of the ECAL simulation and 
overall event speedup

● AdePT does not affect the rest of the simulation, 
1:1 ratio in the time spent outside the ECAL

► Vary number of Geant4 worker threads
● Decreasing AdePT speedup as the GPU 

becomes more saturated
► This integration approach works well for 

detectors where the EM transport is 
dominant 

Speedup of the ECAL simulation and overall per-event speedup
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Integration with a specialized 
Tracking Manager

● We no longer use a GPU Region
○ AdePT transports EM particles across the entire detector
○ Can also be used to enable the specialized transport only in specific regions

● Shows the current upper limits of performance
○ Eliminates overheads caused by sending back particles leaking outside the GPU 

Region
○ No realistic scoring performed on the GPU -> no overhead

● Is impacted more by the current GPU geometry inefficiency
○ VecGeom has to do the full detector in this case
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► Shows a much better speedup when using 
TTbar events than the fast-simulation hooks 
integration

► The speedup increases when the CPU goes 
into hyperthreading, which shows that the 
GPU is not saturated and could take on more 
work
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CMS Run2, TTbar, full detector EM transport 
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Integration reconstructing G4Step 
Information
► Uses the integration via Tracking Manager

► Different approach to scoring
● We no longer have a GPU scoring code
● Instead, we accumulate information about every step done in a sensitive volume on 

the GPU
● This information is used to reconstruct the native G4Step and G4NavigationHistory 

on Host

► As a result, we are able to call arbitrary Sensitive Detector code 
without the need of a GPU port

● This is the easiest-to-adopt integration mode for experiments to try out AdePT
● Allowing to run the full simulation with their current scoring code
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► We see little to no overhead related to 
sending hit information back to the host

► The overhead is most visible when running 
with low thread counts, as a result of the 
reconstruction being done in sync with 
kernel launches
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CMS Run2, TTbar, full detector EM transport on 
the GPU, Hits reconstructed on host, no field, 
Consumer grade GPU 



CMS Run2, TTbar, full detector EM transport on 
the GPU, no field, Nvidia A100, 1-16 Threads

► A faster GPU provides a better speedup 
than equivalent tests with consumer-level 
hardware
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► At a certain point the GPU becomes 
saturated. Geometry is a major factor in 
how early this happens

► Due to the current way of scheduling the 
kernel launches, this means that the GPU 
starts blocking the CPU threads

► More research into non-blocking scheduling 
strategies is ongoing
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► The speedup is smaller when running 
with a magnetic field. This is expected 
as the GPU is more penalized from this 
than the CPU
● more geometry calls and 

divergence due to outliers

► There is still a significant performance 
gain while the device is not saturated
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CMS Run2, TTbar, full detector EM transport on the 
GPU, constant 3.8T field, Nvidia A100, 1-16 Threads



CMS Run2, TTbar, full detector EM transport on the 
GPU, constant 3.8T field, Nvidia A100, 1-96 
Threads
► We observe similar results when running 

with more worker threads

► The GPU becomes saturated with lower 
worker counts. We still get a speedup 
before this happens

► An asynchronous scheduling strategy and 
an improved geometry could largely 
mitigate this issue and preserve the initial 
speedup when using more workers
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Asynchronous Shared AdePT

► One instance of AdePT runs in the 
background

► Transport loop runs continuously
► All G4 workers communicate with 

AdePT asynchronously
● Host threads can continue with CPU 

work (e.g. Hadrons) while transport 
runs in the background

► Integrated to G4 as fast simulation 
model
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Asynchronous Shared AdePT

► When ECAL is offloaded to 
GPU, can transport more events 
in parallel than CPU cores 
available

► Note the AdePT+G4 speed up 
with more threads although 
CPU 2x and 4x overcommitted

► Less device memory usage
→ can transport more tracks 
concurrently
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Mitigation of GPU Saturation

► New VecGeom Surface Model
● A reduced set of surface algorithms compared to the current solid-based 

implementation will reduce branching on the GPU
● We expect a significant improvement in device occupancy due to lower register 

usage, which can increase the amount of work the GPU can take before becoming 
saturated

► Non-Blocking Scheduling strategies
● The current scheduling strategy blocks the CPU threads while the GPU is 

transporting particles
● This is a less-visible issue while the device is not saturated
● When the GPU becomes overloaded it slows down the CPU as well
● The asynchronous AdePT prototype shows a non-exclusive scheduling strategy 

which makes better use of resources
▹ Tasking-based approaches will be also looked-upon
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Propagation in magnetic field

► Uniform magnetic field currently implemented using a helix
► Runge-Kutta integration method is currently being tested and 

validated
► An initial benchmark comparing Helix and Runge-Kutta was done on 

the TestEm3 setup for a single-threaded application
● Further testing is underway with more complex setups and multi-threaded 

applications. Optimization will follow.
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Integration with experiments 

► Making AdePT and its dependencies (geometry and physics) easier to 
integrate in experiment frameworks

● Solve libraries incompatibilities, linking problems, etc
▹ Already solved in case of CMSSW

● Improving the way AdePT can be used externally
▹ Each experiment has its own way of building the geometry and configuration

► Testing AdePT in more complex setups
● Geometry, particles input/output, etc

► Studying the impact of the current scoring approach with realistic 
sensitive detectors

● Delivering Geant4 step information seems to mitigate scoring problems
▹ To be confirmed with realistic use cases
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Ongoing and future work

► GPU geometry model
● Taking most of the development effort
● Larger collaboration would accelerate reaching the common goals

► Improving the CPU-GPU parallelism model
● More efficient CPU utilization while the GPU is saturated
● Optimize alternative GPU dispatching approaches: sub-tasking, single-threaded

► Validation and optimization for non-constant field implementation
● Extending the current RK implementation to more advanced examples

► Integration with experiment frameworks and validation
● Started, hoping to get more momentum soon
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Achievements

► Transport for EM particles working on GPUs for LHC-complexity 
geometries 

● Excellent physics agreement within statistical fluctuation
● Reproducibility of the simulation achieved

► Full integration with Geant4 applications
● Fast simulation approach
● Custom tracking
● Reusing existing sensitive detector implementations

▹ Possible to plug AdePT into existing Geant4 applications with minimal extra 
code 
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Summary

► Achieved the initial goals of the R&D

► Integration with experiments is ongoing and growing  activity
● Study and optimisation of AdePT performance within experiments framework

► The CPU-GPU workflow currently implemented in AdePT can boost 
performance in configurations combining equivalent CPU and GPU 
power

● Further performance gain potential actively explored
● The new surface model expected to largely boost performance by removing the 

bottleneck related to the current geometry implementation
▹ To be validated in the first part of next year for complex setups
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