
AdePT status report
Andrei Gheata, Juan Gonzalez and Witold Pokorski for the AdePT team

13.12.2023

Geant4 assessment of simulation R&D projects: AdePT and Celeritas

Project targets

► Understand usability of GPUs for general particle transport simulation,
seeking for potential speed up and/or usage of available GPU resource
for the HEP simulation

● Prototype e+, e− and γ EM shower simulation on GPU, evolve to realistic use-cases

► Provide GPU-friendly simulation components
● Physics, geometry, field, but also data model and workflow

► Ensure correctness and reproducibility
● Validate the prototype against Geant4 equivalent, ensure reproducible results in all modes

► Integrate in a hybrid CPU-GPU Geant4 workflow
● Understand possible limitation in such an environment

► Understand bottlenecks and blockers limiting performance
● Estimate feasibility and effort for efficient GPU simulation

2

Development approach

► Strategy: integrate gradually features as new examples
● Possible at any time to created a library to link with experiments

frameworks

► Build-up gradually common functionality (services)
● Infrastructure: custom containers and helpers
● Geometry: VecGeom library, adapting & developing for GPU
● Physics: G4HepEm library, a GPU-friendly port of Geant4 EM interactions

► Portability aspects not a major priority in this project phase
● Initial study identified VecGeom as blocking issue

► Demonstrate usability in native Geant4 workflows
● Early integration to allow then optimizing a hybrid CPU-GPU workflow

► Git repository
● Initial commit in Sep 2020, O(10) contributors

3

https://github.com/apt-sim/AdePT

GPU geometry:VecGeom
► Built on top of the original VecGeom GPU/CUDA support

● C++ types re-compiled using nvcc in a separate namespace/library
● In AdePT we wrote a custom global navigation layer calling lower level VecGeom APIs

► Made several improvements for GPU support
● Developed custom optimised navigation state, single-precision support
● Moved from a simple “loop” navigator to an optimized BVH navigator
● Adopted modern CMake GPU support

► Worked on specializing the VecGeom GPU navigation support
● Portable, less complex code

► Added ability to read GDML files allowing to run with almost any
geometry (essential for this R&D)

► Although being a working first solution, CSG-based approach seems to
be a bottleneck on GPU

● Working on surface-based models (see discussion later)

4

GPU-friendly rewrite of EM physics

► G4HepEm: compact library of EM processes for HEP
● Covers the complete physics for e−, e+ and 𝛾 particle transport
● Initialization of physics tables dependent on Geant4, but usage on GPU standalone and

lightweight
● Excellent physics agreement between Geant4 processes and G4HepEm

► Design of library very supportive for heterogeneous simulations
● Interfaces: standalone functions without global state
● Data: physics tables and other data structures copied to GPUs
● Reusing > 95% of the code from G4HepEm for GPU shower simulation

5

GPU workflow

► The GPU workflow has probably the largest impact on performance
● Very different on GPU compared to CPU, it has to be massively parallelizable

▹ AdePT ‘steps’ all active tracks at once

► Different properties to the simulation workflow of Geant4
● No “thread-local” state, everything associated with a track
● At the same time: track must be as lightweight as possible
● Data structures must not create bottlenecks (prefer atomics)

► In AdePT we adopted so far an approach based on active track slots
queues scheduled for per-particle kernels (see following slides)

● A “per-event” approach so far, easier to integrate in realistic simulation workflows

6

Track storage
► Properties stored per track:

● Random number generator state (reproducibility requirement)
● Kinetic energy
● Position, direction, and current navigation state
● State to be preserved across steps (number-of-interaction-left, MSC properties)

► Pre-allocate arrays of tracks per particle type (array of structures)
● One for electrons, one for positrons, one for gammas
● Advantage: can call specialized kernels, potentially specialize stored properties
● Atomic counter to hand out “slots” (to allow compaction)

► Properties not stored per track:
● Particle type / PDG number (implicit from array)
● Charge, mass (can be inferred from particle type)

7

Arrays of active and next tracks

► Store indices of active tracks (per particle
type)

● Parallelize transportation kernels over these indices

► Queue indices for “next” active tracks
● Both secondaries and “surviving” tracks
● Implemented with atomic counter
● Tracks are killed by not enqueuing

► Run transportation kernels stepping the active
tracks

● Here track #1, #2 and #5 survive, track #4 dies, and
track #6 and #7 are produced

► Swap ‘active’ with ‘next’ before next iteration
● Compacting unused slots now possible

8

AOS
Pre-allocated buffer

Stepping workflow

9

• Can start kernels for particle types in parallel streams (transport is
independent)

• Synchronization means overhead
• Synchronize with host once at the end of the step (stepping loop control)

• Main optimization playground
• Better work balancing between warps, reducing impact of tails, better device occupancy
• Experimenting with smaller kernels (separating discrete and continuous interactions)

Random number handling
► To assure reproducibility, RNG state needs to be associated with each

track
● Guarantees identical results no matter the parallel execution order and kernel

configuration
● Essential for debugging during development and production

► Need to initialize new RNG state for secondary particles
● Must only depend on parent track to guarantee reproducibility
● Can re-use RNG state of dying track in annihilation or conversion

10

Random number generator: RANLUX++

► Based on the well-known RANLUX generator
● Uses the equivalent LCG and therefore faster

● Excellent statistical properties: inherited from RANLUX, only shared by MIXMAX

▹ (XORWOW used by default in cuRAND known to fail some statistical tests)

► Portable implementation available, written with GPUs in mind

● See J. Hahnfeld, L. Moneta: A Portable Implementation of RANLUX++

► Advantage over MIXMAX: smaller state

● Even for N = 17, the default generator in Geant4 (148 bytes of state)

● Compared to 80 bytes for RANLUX++

11

Magnetic Field: Runge-Kutta field
propagation

► Developed Runge-Kutta integration method has also been developed using
the Dormand-Prince 5th (’DoPri5’) order tableau which is the default method
in Geant4

► First results with TestEm3, Bz= 3.8T
● Better than per-mille agreement in observables with helix results
● Improved handling of particles ‘stuck’ at boundaries - flip volume at boundary
● Runtime about 1.5x helix (98 s vs 65 s in TestEm3 3.8T test case)

► Next steps - further testing and performance evaluation
● Use semi-realistic field (simplified CMS or ACTS ‘texture’-based interpolation)

Prototype integration strategies
► Developed two integration approaches with Geant4

application

● ‘Region-based’ using fast simulation hooks

● ‘Global’ using custom tracking machinery

► Both allow to delegate the simulation of EM particles to
AdePT while using Geant4 for all the hadronic physics

● AdePT as a plug-in for Geant4

► Possible to switch between full Geant4 and
Geant4+AdePT configuration at run time

13

Prototype integration strategies

► region-based approach for delegating simulation to an
external transport

● particle killed on the Geant4 side and passed to the other transport
engine

● energy depositions and ‘outgoing’ (from that region) particles returned

► this follows ‘fast-simulation’ approach in Geant4
● allows the use of (most of the) existing fast-simulation hooks
● easy integration with the physics list
● ability to switch between full Geant4 and Geant4 + AdePT at runtime

(from macro file)

► one difference:
● we buffer particles to process them together when some threshold is

reached (or when there are no more Geant4 particles on the stack)
▹ New ‘Flush’ method added to Geant4 interface 14

Prototype integration strategies

► Geant4 specialized tracking manager approach
● based on the G4VTrackingManager interface

► AdePTTrackingManager class is attached to e-, e+,
and gamma particle definitions inside the physics list
● those particles not being tracked by Geant4

(anywhere), but handed over directly to AdePT

► FlushEvent method triggers the simulation on the GPU
when some threshold is reached (or when the Geant4
event stack is empty)

15

Scoring
► sensitive volumes marked on the GPU with a flag while

initializing geometry
● list of sensitive volumes provided in Geant4 macro file or read from

GDML auxiliary information

► Two mechanisms of scoring implemented
● User scoring implemented on the device

● ‘Step’ information (in sensitive volumes) transferred to the host for
scoring

► In both cases the output looks the same regardless
running full Geant4 or Geant4 + AdePT

● can be then processed/analysed in the same way
16

GDML
(currently

macro) with
sensitive volume

information

Geant4 application

Geant4 hits

AdePT

Scoring ‘on the device’
► energy deposition per volume (per event) recorded by AdePT in

sensitive volumes and summed up
● other types of ‘hits’ can be implement by user
● array of energy depositions per volume is transferred to the host once the AdePT

‘shower’ finished
● indices of volumes on GPU mapped to the Geant4 ones

► Special SensitiveDetector::ProcessHit method (overloaded) called to
translate this array of energy deposition into Geant4 hits

► Requires dedicated ProcessHit method

► Faster for simple scoring algorithms, but not practical for complex
ones

17

Scoring ‘on the host’
► All ‘step’ information (for sensitive volumes) recorded on the device

and sent to the host
► G4Step objects recreated on the host

► Existing SensitiveDetector::ProcessHits method processes those
G4Steps and created Geant4 hits

► Some (small) overhead, but allows to reuse the existing experiments
scoring code for any detector

18

‘Outgoing’ particles

► if a particle is not to be handled by AdePT anymore (leaves AdePT
region, energy goes below some threshold, etc) it is put in the ‘from
device’ buffer

► after AdePT shower has finished, ‘from device’ buffer is transformed in
Geant4 tracks and put on the Geant4 stack

● Geant4 continues the event loop to process those particles
▹ to guarantee reproducibility (also in MT) particles ‘from device’ are sorted according

to some unique key

► event finishes when no more particles are in the AdePT buffer (‘to
device’) and Geant4 stacks are empty

19

Validation

► Validation against Geant4
standalone is essential

● Comparisons to CPU references (in
general Geant4-based) done for each
added item of functionality

● Both for standalone and Geant4
integration examples

► EM physics now fully validated
● At ‰ level in the sampling calorimeter

test case
● Both AdePT standalone as

Geant4-AdePT integration showing
excellent agreement

20

GPU support in VecGeom

► VecGeom: backend for Geant4 navigation
● Designed to expand the geometry modelling use cases to multi-particle workflows

and GPU
● Intended to become the only geometry modeller to have to maintain long term

► GPU support - a CUDA port of the CPU algorithms
● Most-common Geant4 solids supported at this point
● Work done to improve several areas in the context of the GPU simulation projects

AdePT and Celeritas
▹ memory footprint, robustness, performance, single precision

21

https://indico.jlab.org/event/459/contributions/11427/
https://indico.jlab.org/event/459/contributions/11818/

Current VecGeom solid modeling on GPU
► Several GPU unfriendly features

● Virtual dispatch
● Recursive code (relocation)
● (Very) different branch complexity

► AdePT project: geometry complexity
worsens performance

● GPU performance limited by the geometry model
▹ Longer stalls within warps for the same SM

compute - divergence limiting warp-level
concurrency

▹ Complex register-hungry code limiting the
achievable occupancy

22

CMS
TestEm3

Dispatcher
(virtual)

Box

Tube

Cone

Polyhedron

warp stalls for the
same SM compute
& memory ops

TestEM3 = sampling calorimeter 50 layers
CMS = full CMS_2018 geometry

divergence due to
code complexity

slowdown

Bounded surface modeling
► 3D bodies represented as Boolean

operation of half-spaces*

● First and second order, infinite
● Just intersections for convex primitives

▹ e.g. box = h0 & h1 & h2 & h3 & h4 & h5
● Similarities with the Orange model

▹ Evaluated Orange to start with

► Storing in addition the solid imprint
(frame) on each surface: FramedSurface

● Similarities with detray (ACTS)
● The frame information allows avoiding to

evaluate the Boolean expression for distance
calculations to primitive solids

23

6x (planar half-space +
window frame)

h0

h1

h2 h3

h5

h4

https://github.com/celeritas-project/celeritas/tree/develop/src/orange
https://github.com/acts-project/detray

Objectives for the surface model

► Portable GPU-friendly header library
● Algorithmic part independent on the backend, compilable with any native/portability

compiler
● Headers templated on the precision type to allow for a single-precision mode
● Reduced set of simple surface/frame algorithms (vs. ~20 primitive solids now)

▹ Reducing divergence and register usage on the GPU

► Automatic conversion from VecGeom transient solid model
● Transparent creation of the data structures and copy to GPU
● Preserve awareness of the Geant containment feature as powerful optimization

► Target: code simplification compared to the solid model
● No virtual calls, no recursions, more work-balanced
● Better device occupancy and kernel coherence

24

Conversion of existing solids

► Any solid surface can be made from predefined
surface & frame types

● 3D transformation + pre-defined surface/frame equations
rather than transforming equations in the global reference, for
numerical stability

► Generated framed surfaces behave like the
tessellations in graphics

● ‘Real’ hits allowing for faster distance reductions compare to
the unbound approach

● Except for the Boolean solids, which cannot compute the
frames and have to be fully logically evaluated

25

x

y
z

UnplacedSurface equation:
 z = 0
Frame mask:
 abs(x)<dx && abs(y)<dy

x

yz

n

n

90o

1

2

translate box.x()

3

Current status

26

► Locate - needed only once per track

● using CSG expression, reduction per solid

► Relocate - at each boundary crossing

● frame search on common surface sides

► Distance - half-space + frame query

(propagated point must be contained)
● using hierarchic info constraining candidates

► Safety - combine half-space + frame distances

Boolean

Non-recursive particle relocation
► In Geant volumes can share common surfaces

● Define “common surfaces” as transition boundaries
between volumes, pre-computed and deduplicated

● Touching volumes contribute with frames on each side

► Locating the deepest frames hit on the surface
sides allows finding the location after crossing
volume boundaries

● More efficient 2D linear search, involving only a limited
set of neighbors and not all daughters of a volume

● We can add 2D optimizers to mitigate the complexity at
this level

27

common surface

z

x

y

exiting
side

entering
side

left-side view right-side view

track

A/B →C/D

Scaling for track relocation

28

~Nvol_per_level

~Ntouching_siblings

loop over
objects at the
same level

loop over frames
on a common
surface

Non-recursive Boolean implementation
► Framed surfaces of Boolean solids

can co-exist with non-Boolean ones
on common surfaces

● Linearized Boolean infix expression
evaluation using Boolean algebra
short-circuiting

● Tested union of up to 150 layers of disks
subtracting a box, more exhausts CUDA
stack space for the solid approach

► Initial implementation scaling looking
good

● 2x slower for 5 components, 2x faster for
50 components on GPU

29

Ray-tracing example traversing a complex
Boolean solid until exiting the setup

Preliminary performance

► Unit tests available for correctness checking against VecGeom solid model
● Box, tube, trapezoid, polyhedron, Boolean solids
● TestEm3 - a simple layered calorimeter made of box slabs

► Ray-tracing benchmark, working with generic GDML input (supported solids
only)

● Testing full navigation functionality on CPU and GPU
● Validated & benchmarked against existing VecGeom solid navigators

► Results (compared to solid looping navigation) for trackML setup
● Safety computation: ~2x slower on CPU, ~2x faster on GPU
● Propagation + relocation: ~2x faster on CPU, ~6x faster on GPU
● Memory: ~1.5 kByte per “touchable” volume

30

trackML

Memory mitigation
► Cannot afford to expand all touchables surfaces in memory

● Including bounding box optimizations, we can easily reach O(10) GBytes

► Adding support for the “scene” concept
● Highly replicated volumes, kept once in memory, defining local “worlds”
● A state in this approach can be represented by a tuple: (n0, n1, .. , nm)

▹ Storing local surfaces and transformations
▹ We can constrain the maximum depth `m` to a small value, with a huge impact on the

memory footprint
▹ Price to pay: conversion to the touchable frame done via successive transformations

► Now fully implemented and giving quite accurate estimates of the memory
reduction

● Main challenge: implementing scene-aware surface navigation - Done

31

Memory estimation for CMS Run2 setup

► The optimal choice of volumes to be kept as
scenes is constrained

● on the maximum scene depth, set at compilation time
▹ plot above, a depth of 3-4 allows keeping the

memory below 100 MB
● on the minimum number of sub-hierarchy touchables

▹ for a given maximum depth, this allows to
fine-tune the average scene depth to minimize
the number of extra run-time matrix conversions

► The impact on navigation performance
● Seems negligible for simple setups, to be confirmed in

complex ones

32

flathierarchic

Integration in AdePT GPU prototype
► Optional usage of the surface model

in AdePT example
● No relevant changes needed other than

triggering the model conversion and the
navigator type

► Sampling calorimeter simulation
● block of Pb + LAr box layers (w/ constant

Bz field)
● 10 GeV electrons shot towards the

calorimeter along X axis

► Numerical divergence small and
understood

● Boundary crossing relocation
33

BVH no
BVH
surf

no field 152s 156s

Bz=1T 194s 184s

Geometry to-do list

► Completion of the missing solid-to-surface conversion in CMS Run2 setup
● polycone, cut tube, simple extruded

► Adding the adapted BVH acceleration for searches on common surface
candidates

● In future we may also need to reduce the search complexity within frames on common
surfaces

► Validating the transport on CMS Run2 geometry (est. 2nd-3rd quarter 2024)
● Measuring the impact on performance (including single-precision mode)

► Completing the model with the missing solids supported by Geant4
► Migration to version 2 of VecGeom (est. by the end of 2024)

● Simplified CPU interfaces and portable surface-based GPU support

34

Test tools

► Tools for benchmarking and validation
● Timers, accumulators, export of results
● Adapted to the needs found for AdePT

► Implemented in one of the integration examples
● Easier extraction of in-detail data for further analysis
● For example time spent simulating leptons inside the CMS ECAL

► Python scripts for automated testing and validation
● JSON test configurations for easy setup and sharing
● Automatic plotting of the results

35

Integration with fast-simulation Hooks

► AdePT transports particles in the ECAL region

► e-, e+ and gammas are buffered before triggering a shower

► Scoring is performed on the GPU when using AdePT
● Simple scoring code as a placeholder for more complex options
● Equivalent code on CPU and GPU

36

CMS Run2, electron bunches

Geant4/AdePT throughput 37

► Not a realistic benchmark from
event/track distribution
perspective

● ~75% of tracks transported in the
ECAL

► Has the merit of showing how
much the EM transport can be
accelerated on per-detector basis

Proportion of time spent simulating leptons in the ECAL

► Measure fraction of time spent simulating
leptons in the ECAL

► Compare original fraction with Geant4
with improvement by AdePT

38

EM shower transport acceleration

► Speedup of the ECAL simulation and
overall event speedup

● AdePT does not affect the rest of the simulation,
1:1 ratio in the time spent outside the ECAL

► Vary number of Geant4 worker threads
● Decreasing AdePT speedup as the GPU

becomes more saturated
► This integration approach works well for

detectors where the EM transport is
dominant

Speedup of the ECAL simulation and overall per-event speedup

39

EM shower transport acceleration

Integration with a specialized
Tracking Manager

● We no longer use a GPU Region
○ AdePT transports EM particles across the entire detector
○ Can also be used to enable the specialized transport only in specific regions

● Shows the current upper limits of performance
○ Eliminates overheads caused by sending back particles leaking outside the GPU

Region
○ No realistic scoring performed on the GPU -> no overhead

● Is impacted more by the current GPU geometry inefficiency
○ VecGeom has to do the full detector in this case

40

► Shows a much better speedup when using
TTbar events than the fast-simulation hooks
integration

► The speedup increases when the CPU goes
into hyperthreading, which shows that the
GPU is not saturated and could take on more
work

41

CMS Run2, TTbar, full detector EM transport
on the GPU, no field, Consumer grade GPU

Integration reconstructing G4Step
Information
► Uses the integration via Tracking Manager

► Different approach to scoring
● We no longer have a GPU scoring code
● Instead, we accumulate information about every step done in a sensitive volume on

the GPU
● This information is used to reconstruct the native G4Step and G4NavigationHistory

on Host

► As a result, we are able to call arbitrary Sensitive Detector code
without the need of a GPU port

● This is the easiest-to-adopt integration mode for experiments to try out AdePT
● Allowing to run the full simulation with their current scoring code

42

► We see little to no overhead related to
sending hit information back to the host

► The overhead is most visible when running
with low thread counts, as a result of the
reconstruction being done in sync with
kernel launches

43

CMS Run2, TTbar, full detector EM transport on
the GPU, Hits reconstructed on host, no field,
Consumer grade GPU

CMS Run2, TTbar, full detector EM transport on
the GPU, no field, Nvidia A100, 1-16 Threads

► A faster GPU provides a better speedup
than equivalent tests with consumer-level
hardware

44

► At a certain point the GPU becomes
saturated. Geometry is a major factor in
how early this happens

► Due to the current way of scheduling the
kernel launches, this means that the GPU
starts blocking the CPU threads

► More research into non-blocking scheduling
strategies is ongoing

45

CMS Run2, TTbar, full detector EM transport on
the GPU, no field, Nvidia A100, 1-96 Threads

► The speedup is smaller when running
with a magnetic field. This is expected
as the GPU is more penalized from this
than the CPU
● more geometry calls and

divergence due to outliers

► There is still a significant performance
gain while the device is not saturated

46

CMS Run2, TTbar, full detector EM transport on the
GPU, constant 3.8T field, Nvidia A100, 1-16 Threads

CMS Run2, TTbar, full detector EM transport on the
GPU, constant 3.8T field, Nvidia A100, 1-96
Threads
► We observe similar results when running

with more worker threads

► The GPU becomes saturated with lower
worker counts. We still get a speedup
before this happens

► An asynchronous scheduling strategy and
an improved geometry could largely
mitigate this issue and preserve the initial
speedup when using more workers

47

Asynchronous Shared AdePT

► One instance of AdePT runs in the
background

► Transport loop runs continuously
► All G4 workers communicate with

AdePT asynchronously
● Host threads can continue with CPU

work (e.g. Hadrons) while transport
runs in the background

► Integrated to G4 as fast simulation
model

48

G4
Worker AdePT

G4
Worker AdePT

G4
Worker AdePT

G4
WorkerG4
WorkerG4
Worker AdePT

Asynchronous Shared AdePT

► When ECAL is offloaded to
GPU, can transport more events
in parallel than CPU cores
available

► Note the AdePT+G4 speed up
with more threads although
CPU 2x and 4x overcommitted

► Less device memory usage
→ can transport more tracks
concurrently

49

Mitigation of GPU Saturation

► New VecGeom Surface Model
● A reduced set of surface algorithms compared to the current solid-based

implementation will reduce branching on the GPU
● We expect a significant improvement in device occupancy due to lower register

usage, which can increase the amount of work the GPU can take before becoming
saturated

► Non-Blocking Scheduling strategies
● The current scheduling strategy blocks the CPU threads while the GPU is

transporting particles
● This is a less-visible issue while the device is not saturated
● When the GPU becomes overloaded it slows down the CPU as well
● The asynchronous AdePT prototype shows a non-exclusive scheduling strategy

which makes better use of resources
▹ Tasking-based approaches will be also looked-upon

50

Propagation in magnetic field

► Uniform magnetic field currently implemented using a helix
► Runge-Kutta integration method is currently being tested and

validated
► An initial benchmark comparing Helix and Runge-Kutta was done on

the TestEm3 setup for a single-threaded application
● Further testing is underway with more complex setups and multi-threaded

applications. Optimization will follow.

51

Integration with experiments

► Making AdePT and its dependencies (geometry and physics) easier to
integrate in experiment frameworks

● Solve libraries incompatibilities, linking problems, etc
▹ Already solved in case of CMSSW

● Improving the way AdePT can be used externally
▹ Each experiment has its own way of building the geometry and configuration

► Testing AdePT in more complex setups
● Geometry, particles input/output, etc

► Studying the impact of the current scoring approach with realistic
sensitive detectors

● Delivering Geant4 step information seems to mitigate scoring problems
▹ To be confirmed with realistic use cases

52

Ongoing and future work

► GPU geometry model
● Taking most of the development effort
● Larger collaboration would accelerate reaching the common goals

► Improving the CPU-GPU parallelism model
● More efficient CPU utilization while the GPU is saturated
● Optimize alternative GPU dispatching approaches: sub-tasking, single-threaded

► Validation and optimization for non-constant field implementation
● Extending the current RK implementation to more advanced examples

► Integration with experiment frameworks and validation
● Started, hoping to get more momentum soon

53

Achievements

► Transport for EM particles working on GPUs for LHC-complexity
geometries

● Excellent physics agreement within statistical fluctuation
● Reproducibility of the simulation achieved

► Full integration with Geant4 applications
● Fast simulation approach
● Custom tracking
● Reusing existing sensitive detector implementations

▹ Possible to plug AdePT into existing Geant4 applications with minimal extra
code

54

Summary

► Achieved the initial goals of the R&D

► Integration with experiments is ongoing and growing activity
● Study and optimisation of AdePT performance within experiments framework

► The CPU-GPU workflow currently implemented in AdePT can boost
performance in configurations combining equivalent CPU and GPU
power

● Further performance gain potential actively explored
● The new surface model expected to largely boost performance by removing the

bottleneck related to the current geometry implementation
▹ To be validated in the first part of next year for complex setups

55

AdePT developers and contributors

Guilherme Amadio, CERN
John Apostolakis, CERN
Predrag Buncic, CERN
Gabriele Cosmo, CERN
Dusan Cvijetic, EPFL
Daniel Dosaru, EPFL
Andrei Gheata, CERN
Juan Gonzalez, CERN
Bernhard Manfred Gruber, CERN
Stephan Hageboeck, CERN

56

Jonas Hahnfeld, CERN
Mark Hodgkinson, University of Sheffield
Vladimir Ivantchenko, CERN
Ben Morgan, University of Warwick
Mihaly Novak, CERN
Antonio Petre, University of Bucharest
Witold Pokorski, CERN
Alberto Ribon, CERN
Eduard George Stan, ISS Bucharest
Graeme Stewart, CERN
Pere Mato Vila, CERN

