

Hadoop User Forum #1

Welcome

Thanks for joining the Hadoop user forum !

Bring together the users of the service Share our plans with you Listen to your feedback and ideas Understand how we can provide a better service

Agenda

09:00 → 09:30	Welcome coffee	© 30m 🖉 ▾
09:30 → 10:20	Hadoop Service	<u></u>
	09:30 Status Overview of the service evolution and presentation of main changes in the last year Speaker: Pedro Andrade (CERN)	©20m ┏ -
	09:50 Roadmap Operational goals for next year and long-term service strategy Speaker: Emil Kleszcz (CERN) 20231204 - Hadoop	⊙ 30m 🗹 ▾
10:20 → 10:30	Break	() 10m
10:30 → 11:30	Hadoop User Communities	3 , *
	10:30 ATLAS EventIndex Team Speaker: Grigori Rybkin (Université Paris-Saclay (FR)) Mattas EventIndex i	© 15m 🖉 💌
	10:45 MONIT Team Speaker: Nikolay Tsvetkov (CERN)	© 15m 🗹 🕶
	11:00 NXCALS Team Speaker: Jakub Wozniak (CERN)	© 15m 🖉 🕶
	SWAN Team Speaker: Enric Tejedor Saavedra (CERN) Padoop u	© 15m ∠* →
11:30 → 12:00	Discussion	© 30m 🗹 🕶

Hadoop Service Overview

Overview

- 1. Introduction: hadoop, ecosystem, history
- 2. People: team, users and projects
- 3. Infrastructure: resources, architecture, clusters, tech stack
- 4. User information: tips and tricks, communication

Introduction

Hadoop - Ecosystem - History

Introduction

What is Hadoop ?

"An open source software platform for distributed storage and distributed processing of very large data sets on computer clusters built from commodity hardware."

Why Hadoop?

- Too much Data (TB per day)
- Vertical scaling doesn't cut it
- Horizontal scaling is linear

People Team - Users - Projects

Team

04 Dec 2023

Pedro Andrade | Hadoop service overview

HDFS active users

1721 registered users

260 240 200 200 180 160 25/11.00:00 25/11.

04 Dec 2023

Projects

HDFS files/folders

 HDFS disk space
 33.2 Mil

 NXCALS
 33.2 Mil

 Security
 3.5 Mil

 CMS
 586.5 K

 ITMON
 2.3 Mil

 MONIT
 4.2 Mil

 ATLAS Rucio
 10.7 Mil

Infrastructure

Resources - Architecture - Clusters - Tech Stack

Resources: bare metal

Order	Installation	End of life	Status	Description
L3	2017	2024	IT support	24 nodes and 6 JBODs
HDP1	2017	2022	retired	8 nodes and 16 JBODs
HDP2	2018	2023	IT support	42 nodes and 76 JBODs
HDP3	2019	2024	IT support	8 nodes and 16 JBODs
HDP4	2020	2025	IT support	16 nodes and 32 JBODs
HDP5	2021	2026	warranty	60 nodes and 32 JBODs
HDP6	2022	2027	warranty	20 nodes and 15 JBODs
HDP7	2023	2028	warranty	24 nodes and 24 JBODs

Resources: virtual machines

Production

Development

Architecture: general-purpose cluster

Architecture: NXCALS

Based on same common architecture and components

However, due to NXCALS critically, service is provided via 2 distinct clusters:

HDFS cluster

- 3 quorum nodes
 - 2 namenodes
 - 2 Resource Managers
 - Zookeeper quorum
 - Journal quorum
- multiple datanodes

HBase cluster

- 3 quorum nodes
 - 2 namenodes
 - 2 HBase masters
 - Zookeeper quorum
 - Journal quorum
- multiple datanodes
 - HBase regionservers

Clusters

Name	Туре	Environment	Provisioning	Nodes
Analytix	All	PROD	Bare metal	60
Nxcals Prod	HDFS	PROD	Bare metal	53
Nxcals Prod Online	HBase	PROD	Bare metal	32
Nxcals Perftest	HDFS	PROD	Bare metal	10
Nxcals Perftest Online	HBase	PROD	Bare metal	6
Nxcals Dev	HDFS	PROD	Virtual machines	10
Nxcals Dev Online	HBase	PROD	Virtual machines	10
Hadoop QA	All	QA	Virtual machines	10
Stager	All	DEV	Virtual machines	5

Clusters

Software

Tech stack

Software Distribution

- Apache Hadoop
- Custom RPMs

Installation and Configuration

- CentOS 7.9/Alma 9
- Puppet: custom modules

Security

- AuthN (Kerberos)
- Fine-grained authZ (LDAP)

puppet

High Availability

• Automatic master failover

Changes Management

- Rolling approach
- No downtime
- Transparent most of the cases

Monitoring and SLS

- MONIT, custom Collectd plugin
- OpenSearch, Grafana

Disaster recovery

Inline with IT department BC/DR strategy

• Protect the service against

- Data corruption
- Data deletion
- Cluster unavailability
- Data center issues

• Caused by

- Hardware failures (disk, node, rack)
- Human errors (logical, accidental)
- Application errors
- Data mismanagement
- Site failure

Disaster recovery

Hadoop scenarios when DR is needed

- One of the cluster nodes (with all the disks) goes down and we cannot recover it.
- The whole cluster goes down and we cannot restore the data.
- Some data is corrupted by a user or the system and needs to be restored back-in-time.

Implementation guidelines

- Make sure users/projects' data and service metadata is safe
- Use as much as possible native Hadoop functionality
- Run the DR tools (backup and restore) as frequently as possible
- HDFS backups to CTA and HBase snapshot to external HDFS cluster
- Keep DR artifacts in separate DC, for now still in the same DC :(

User information

Tips & Tricks - Communication

Tips & tricks

- Monitoring
 - To visualize the clusters health and performance
 - <u>https://monit-grafana.cern.ch/?orgId=23</u>
- HDFS Web UI
 - To inspect cluster health, datanodes utilization, snapshot info, browse the filesystem
 - Analytix, NXCALS
- YARN Web UI
 - To inspect details of the applications status and history
 - <u>Analytix</u>, <u>NXCALS</u>
- Spark Web UI
 - To inspect details of spark jobs status and history
 - Analytix, NXCALS

Tips & tricks

• Client edge nodes

- To connect and interact with the clusters
- <u>https://hadoop.docs.cern.ch/getstart/client_edge_machine/</u>
- QA/Dev cluster
 - To test your applications and workflows
- Email notifications
 - To alert you when you cluster is getting full

Communication

• ServiceNow

- Open tickets to report problems or ask new features
- Request access to clusters and quota modifications
- <u>https://cern.service-now.com/service-portal?id=service_element&name=Hadoop-Service</u>

• Documentation

- To know more about the service
- https://hadoop.docs.cern.ch

• Mattermost

- For a direct support chat with the team
- <u>https://mattermost.web.cern.ch/it-dep/channels/it-hadoop-service</u>

• User Forum

• To discuss the service status and plans

Thank you for your attention

Pedro Andrade @ CERN

04.12.2023

