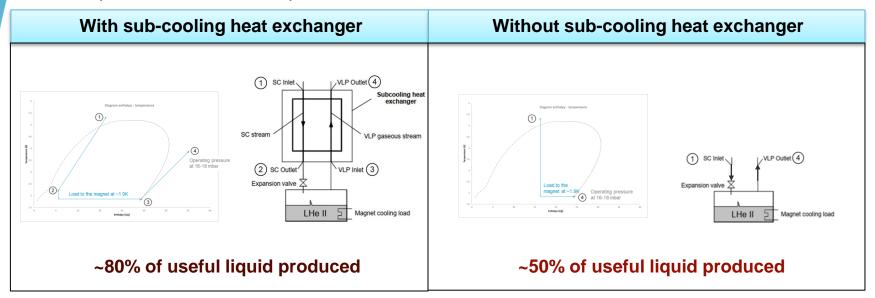


Subcooling HEX Contract Kick Off Meeting Specification review / feedback on the production of the 1st HEX batch

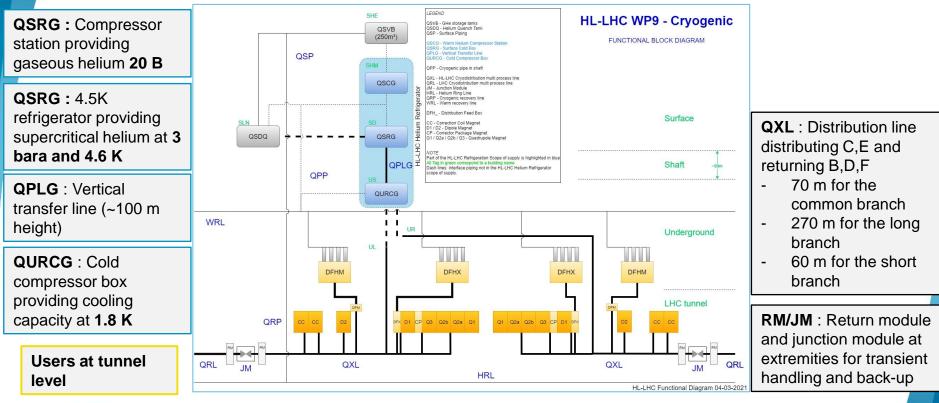
V. Gahier

CERN, 06/10/2023

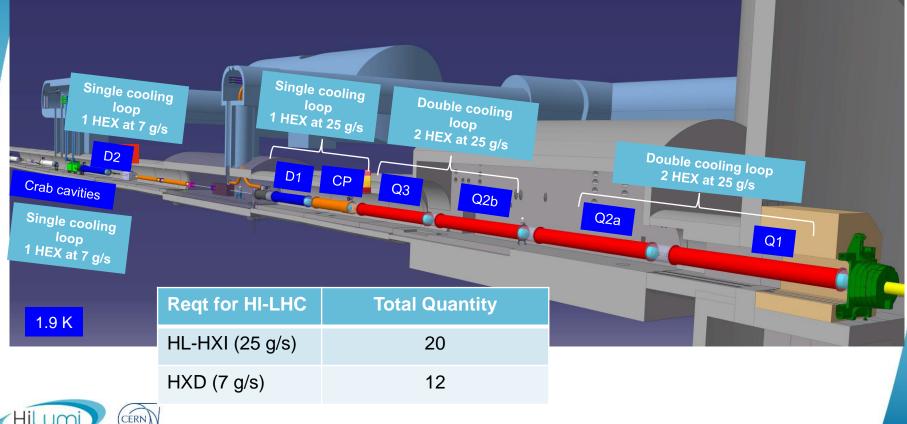


- CERN requirements
- Documentation and planning delivery
- Feedback related to the first order

Function of the sub-cooling heat exchangers


Helium sub-cooling heat exchangers are used to minimize the helium vapour fraction produced in the final expansion of the 1.9 K loop :

 For a given heat load at the magnet level at 1.9 K, the circulating helium flow is decreased thanks to the sub-cooling heat exchanger and increasing the global efficiency of the system.


HL-LHC P1/P5 Cryogenic architecture

Т

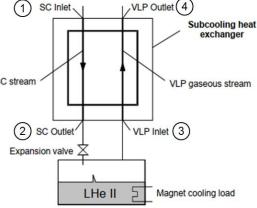
Reminder : What needs to be cooled at 1.9 K

Objectives of the Requirement/Project

Quality

- Counter flow helium heat exchanger operating in superfluid helium conditions integrated in an insulated vacuum.
- Shall be compact due to integration constraints.
- Pressure drop on the VLP circuit at 1 mbar is crucial in order to operate the magnet sc stream heat exchanger at a temperature lower than 1.9 K.
- Material Special Regt: the cobalt content for the Stainless Steel shall be as low as reasonably possible and in any case below 0.3% of mass.

Cost and Time .


Shall be available in due time for integration in the service modules of the Cryogenic distribution line (QXL).

 ()			
7 g/s capacity heat e	exchanger		25 g/s capacity he
circuit A (SC stream)	circuit B (VLP stream)		circuit A (SC stream)
Helium	Helium	Type of fluid	Helium
4.6-5.3 K	Vapour saturated (1.8-1.9 K)	Inlet temperature	4.6-5.3 K
<2.2 K	3.2-3.9 K	Outlet temperature	<2.2 K
7 g/s	7 g/s	Nominal flow	25 g/s
1.3-7 g/s	1.3-7 g/s	Reduced flow	1.8-25 g/s
2.3 – 4.2 bar a	0.0164- 0.023 bar a	Nominal pressure	2.3 – 4.2 bar a
20 bar a	4 bar a	Design pressure	20 bar a
20 kPa	100 Pa	Max Pressure drop	20 kPa

Type of fluid

Inlet temperature Outlet temperature Nominal flow Reduced flow Nominal pressure Design pressure Max Pressure drop

circuit B (VLP stream)

 $\mathbf{V}_{\text{ansatz}} = \mathbf{I} (\mathbf{1} \mathbf{0} \mathbf{1} \mathbf{0} \mathbf{V})$

Helium

25 g/s capacity heat exchanger

iniet temperature	4.0-5.5 K	vapour saturated (1.8-1.9 K)	
Outlet temperature	<2.2 K	3.2-3.9 K	
Nominal flow	25 g/s	25 g/s	
Reduced flow	1.8-25 g/s	1.8-25 g/s	
Nominal pressure	2.3 – 4.2 bar a	0.0164- 0.023 bar a	
Design pressure	20 bar a	4 bar a	
Max Pressure drop	20 kPa	100 Pa	

V.Gahier - Subcooling HEX Contract Kick Off Meeting - 06.10.23

Documentation / Delivery planning

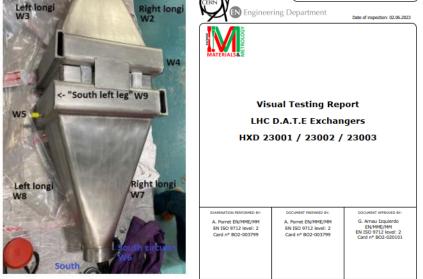
- Required Documentation :
 - Timing plan for design, manufacturing testing;
 - Detailed design file;
 - Manufacturing and Inspection Plan;
 - Testing plan;
 - Templates used for reporting the results of the tests;
 - Material certificates and tests report at reception

Delivery planning for the tendering contract

		2024																													
	Jan		Feb		March				April			May			June			July			August			Sep			Oct				
Batch 1 delivery and acceptance at CERN																															
Batch 2 delivery and acceptance at CERN																															
Batch 3 delivery and acceptance at CERN																															
Batch 4 delivery and acceptance at CERN																															

First batch order - CERN feedback

- ✓ First batch ordered in Dec 2022
 ✓ 3 HXD;
 ✓ 5 HL-HXI.
- ✓ Documentation received:
 - ✓ Detailed drawing and 3D model;
 - ✓ Welding book;
 - ✓ Thermal and mechanical CN;
 - ✓ Reception reports and material certificate.
- ✓ All the pieces received as per the defined planning.
- CERN visit during the production for intermediate inspection.



First batch order - CERN feedback Inspection report HXD

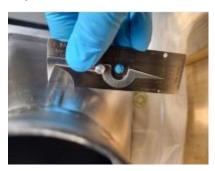
- Improved quality compared to the HXI batch received for the SQXL.
- HXD production lesson learnt:
 - Fiber present on the VLP circular weld
 - Lack of penetration on the SC inlet and outlet pipe not acceptable according to ISO 5817 level C.
- CERN shared recommendation on welding procedure of the SC inlet and outlet pipe.
- DATE took into consideration feedback and trained to improve quality.
- → Problem solved for HL-HXI !

CFRN

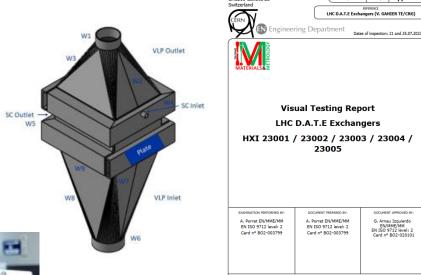
CH1211 Geneva 23

2902194

1.0


Approved

Repairs in progress in CERN central workshop.



First batch order - CERN feedback Inspection report HXI

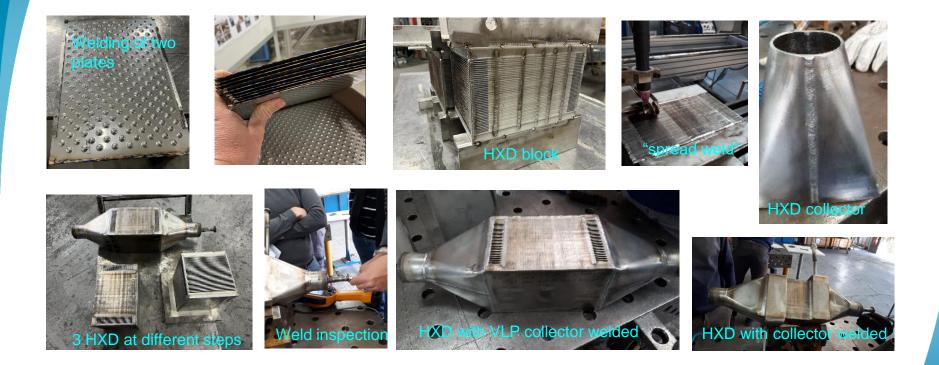
- High level of welding quality.
- Particularity of the HL-HXI : VLP diffusers of 5 mm thick
 - On 2 HXIs, Linear Misalignment (up to 3 mm) on the longitudinal weld.
 - Maximum limit allowed according to ISO 5817 level C is 0.75 mm.
- Two end crater pipe defaults found → Repair will be performed at CERN

CERN

CH1211 Geneva 23

2920178

3.0


Approved

Conclusion

- Collaboration with DATE since LHC construction.
- First batch order allowed :
 - Matching CERN / DATE expectations in term of quality.
 - Establishing efficient communication between the teams.
 - Sharing the lesson learnt to improve the quality and processes for the series batch.
- CERN inspection visit to be planned before batch expedition.

Production steps of one HXD of the single order

Thank you for your attention

CERN

Gahier - Subcooling HEX Contract Kick Off Meeting -