

www.spsc.tugraz.at

pernkopf@tugraz.at

Motivation

- Deep neural networks (DNNs) achieve stateof-the-art results in various domains
- Despite their predictive performance

limited usability in safety-critical applications

Motivation

3

- Deep neural networks (DNNs) achieve stateof-the-art results in various domains
- Despite their predictive performance
 - limited usability in safety-critical applications
- Main factors:
 - ✓ Lack of transparency of DNN's inference
 - ✓ Inability to distinguish between in-domain and out-of-domain (OOD) samples
 - ✓ Sensitivity to domain shifts
 - ✓ Inability to provide reliable uncertainty estimates
 - ✓ Sensitivity to adversarial attacks
- Overcome these limitations:

Essential to provide reliable uncertainty estimates

[Gaw22] J. Gawlikowski et al. A Survey of Uncertainty in Deep Neural Networks. 2022.

Uncertainty Modeling

Predictive uncertainty of a DNN is composed by:

- Aleatoric uncertainty: Captures noise inherent in the data (not reduceable)
- Epistemic uncertainty: Uncertainty in the model due to lack of knowledge and data; can be reduced by more data

⁵ Sources for Uncertainty and Error

- Variability in the real world
 - ✓ Distribution shift

Sources for Uncertainty and Error

- Variability in the real world
 - ✓ Distribution shift

6

- Error and noise in measurement
 - ✓ Sensor noise
 - ✓ Label noise

⁷ Sources for Uncertainty and Error

- Variabiltiy in the real world
 - ✓ Distribution shift
- Error and noise in measurement
 - ✓ Sensor noise
 - ✓ Label noise
- Error in DNN model structure
 - ✓ Architecture & size
 - ✓ Deep vs. shallow

Sources for Uncertainty and Error

- Variabiltiy in the real world
 - ✓ Distribution shift
- Error and noise in measurement
 - ✓ Sensor noise
 - ✓ Label noise
- Error in DNN model structure
 - ✓ Architecture & size
 - ✓ Deep vs. shallow
- Error in training
 - Many parameters to tune: batch size, optimizer, learning rate, regularizer etc.
 - ✓ Lack in training data: imbalance, coverage, size

Sources for Uncertainty and Error

- Variabiltiy in the real world
 - ✓ Distribution shift
- Error and noise in measurement
 - ✓ Sensor noise
 - ✓ Label noise
- Error in DNN model structure
 - ✓ Architecture & size
 - ✓ Deep vs. shallow
- Error in training
 - Many parameters to tune: batch size, optimizer, learning rate, regularizer etc.
 - ✓ Lack in training data: imbalance, coverage, size
- Errors caused by unknown data
 - ✓ Out-of-domain (OOD) data

Outline

10

Methods for uncertainty estimation:

- ✓ Single deterministic models
- ✓ Bayesian neural networks
- ✓ Ensemble methods

- ✓ Particle-optimization based variational inference
- ✓ Single multi-headed model

Some experiments & results

[Gaw22] J. Gawlikowski et al. A Survey of Uncertainty in Deep Neural Networks. 2022.

Single Deterministic Methods

- Class probabilities of a single (deterministic) network (with softmax output layer) can be interpreted as uncertainty
- These uncertainties are over-confident
 - uncertainties are poorly calibrated

	/	1	\mathbf{i}	/		/	/
Pred:	1	1	3	7	7	1	1
Conf:	1	0.8	0.97	1	0.98	0.94	1
	Ф	Q	С	С	8	${\cal B}$	R
Pred:	3	8	1	1	8	8	8
Conf:	1	0.62	1	0.84	0.99	1	0.99
	7	1	\wedge	2	1	<	L
Pred:	7	7	7	1	5	6	6
Conf:	1	1	0.88	0.86	0.87	0.97	1

Fig. 5: Predictions received from a LeNet network trained on MNIST's handwritten digits from 0 to 9 and evaluated on different rotations of test samples.

Single Deterministic Methods

- Spectral-normalized Neural Gaussian Process (SNGP) [Liu20]
 - 1) Deep feature extractor for input transformation
 - 2) Gaussian process at output layer (Laplace approximation)

[Liu20] J. Liu, Z. Lin, A. Padhy, D. Tran, T. Bedrax Weiss, Tania and B. Lakshminarayanan, Simple and Principled Uncertainty Estimation with Deterministic Deep Learning via Distance Awareness, NeurIPS 2020.

¹³ Single Deterministic Methods

- Spectral-normalized Neural Gaussian Process (SNGP)
 - 1) Deep feature extractor for input transformation
 - 2) Gaussian process at output layer (Laplace approximation)

Important: Bi-Lipschitz constraint on deep feature extractor [Liu20, AmS21] spectral normalization of weights (i.e. largest singular value ≤ 1) residual connections

Single Deterministic Methods

(b) Trained without constraint

(c) Trained with constraint

A 2D classification task where the classes are two Gaussian blobs (drawn in green)

Feature representation is sensitive to changes in input (no feature collapse) Feature representation is smooth *constant* generalization and robustness

[Liu20] J. Liu, Z. Lin, A. Padhy, D. Tran, T. Bedrax Weiss, Tania and B. Lakshminarayanan, Simple and Principled Uncertainty Estimation with Deterministic Deep Learning via Distance Awareness, NeurIPS 2020. [AmS21] van Amersfoort, J., Smith, L., Jesson, A., Key, O., & Gal, Y. "On feature collapse and deep kernel learning for single forward pass uncertainty". arXiv preprint arXiv:2102.11409, 2021

Single Deterministic Methods

15

• Spectral-normalized Neural Gaussian Process (SNGP)

Uncertainty on two moons data set:

Ensemble Methods

Ensemble Networks

- Several randomly initialized networks are trained
- Prediction/uncertainty estimation: Output of ensemble members is combined

Bayesian neural networks

Bayesian Neural Network

- Network parameters θ
- $\mathcal{D} = {\mathbf{x}_i, \mathbf{y}_i}_{i=1}^N = (\mathbf{X}, \mathbf{Y})$ training data
- Posterior: $p(\theta|\mathbf{X}, \mathbf{Y}) \propto \prod_{i=1}^{n} p(\boldsymbol{y}_i | f(\boldsymbol{x}_i; \theta)) p(\theta)$
- Prediction: $p(\boldsymbol{y}^*|\boldsymbol{x}^*, \mathcal{D}) = \int p(\boldsymbol{y}^*|f(\boldsymbol{x}^*; \boldsymbol{\theta})) p(\boldsymbol{\theta}|\mathcal{D}) d\boldsymbol{\theta}$
- Integral for prediction is approximated by Monte Carlo averaging
- Posterior distribution is intractable poproximate inference

Methods for approximating the weight posterior distribution

- Sampling based methods
 - ✓ Hamiltonian-Monte-Carlo (HMC) sampling
 - ✓ Considered as the "gold-standard" solution
 - ✓ Enormous run-time required for good estimate

Methods for approximating the weight posterior distribution

• Sampling based methods

21

- ✓ Hamiltonian-Monte-Carlo (HMC) sampling
- ✓ Considered as the "gold-standard" solution
- Enormous run-time required for good estimate
- Variational inference (VI)
 - Approximate multi-modal posterior with oversimplified tractable distribution (e.g., factorized uni-modal Gaussians)
 - ✓ Limits approximation quality

Methods for approximating the weight posterior distribution

- Sampling based methods
 - ✓ Hamiltonian-Monte-Carlo (HMC) sampling
 - ✓ Considered as the "gold-standard" solution
 - ✓ Enormous run-time required for good estimate
- Variational inference (VI)
 - Approximate multi-modal weight posterior with oversimplified tractable distribution (e.g., factorized uni-modal Gaussians)
 - ✓ Limits approximation quality
- Particle-optimization-based VI (POVI)
 - ✓ Iteratively updates a set of particles, such that its empirical probability measure approximates the correct posterior

- Weight-space particle methods (POVI)
 - ✓ Considers *n* weight configurations of a neural network: $\{\theta^{(i)}\}_{i=1}^{n}$
 - ✓ Weights are updated using gradient of the posterior:

with
$$\begin{array}{c} \theta_{l+1}^{(i)} \leftarrow \theta_{l}^{(i)} - \epsilon_{l} \mathbf{v}(\theta_{l}^{(i)}) \\ \mathbf{v}(\theta_{l}^{(i)}) = \nabla_{\theta_{l}^{(i)}} \log \underbrace{p(\theta_{l}^{(i)} \mid \mathbf{x})}_{\text{POSTERIOR}} \end{array}$$
 Learning rate

- ✓ Predictions of members are combined: Bayesian model averaging
- Problem: Particles may converge to same mode of posterior

- Weight-space particle methods (POVI)
 - ✓ Considers *n* weight configurations of a neural network: $\{\theta^{(i)}\}_{i=1}^{n}$
 - ✓ Weights are updated using gradient of the posterior:

with
$$\theta_{l+1}^{(i)} \leftarrow \theta_l^{(i)} - \epsilon_l \underline{\mathbf{v}}(\theta_l^{(i)})$$

 $\mathbf{v}(\theta_l^{(i)}) = \nabla_{\theta_l^{(i)}} \log \underbrace{p(\theta_l^{(i)} \mid \mathbf{x})}_{\text{POSTERIOR}}$ Learning rate

- ✓ Predictions of members are combined: Bayesian model averaging
- Problem: Particles may converge to same mode of posterior
- Repulsive component to maintain diversity (inspired by SVGD)

$$\mathbf{v}(\theta_{l}^{(i)}) = \nabla_{\theta_{l}^{(i)}} \log \underbrace{p(\theta_{l}^{(i)} \mid \mathbf{x})}_{\text{posterior}} - \mathcal{R}\left(\sum_{j=1}^{n} \nabla_{\theta_{l}^{(i)}} k\left(\theta_{l}^{(i)}, \theta_{l}^{(j)}\right)\right)$$
Repulsion term

✓ e.g. RBF kernel

✓ Gradient of kernel moves particles away from close neighbors

[DAF21] F. D'Angelo, V. Fortuin, "Repulsive Deep Ensembles are Bayesian." NeurIPS, 2021

26

 Problem: Over-parameterized models may have different weights which map to the same function is loss of diversity in ensemble

- Particle-optimization-based Variational Inference
- Problem: Over-parameterized models may have different weights which map to the same function
 Ioss of diversity in ensemble
- Function-space particle methods (f-POVI)

27

- ✓ Formulation in function space [Wan19]: Particles represent functions $f^{(1)}(\mathcal{X}), \dots, f^{(n)}(\bar{\mathcal{X}})$
- ✓ Function space is parameterized by network $f(X; \theta_l)$
- ✓ Optimization requires approximations...
- Repulsion term is evaluated at data points

[Wan19] Z. Wang, T. Ren, J. Zhu, and B. Zhang. Function space particle optimization for Bayesian neural networks. ICLR, 2019.

Single Multi-headed Model

Single Multi-headed Model (MH-f-POVI)

- Combining Ideas
 - 1) Deep feature extractor for input transformation
 - 2) Function-space POVI on feature space for stochastic output layers

• Model is composed of a shared base model and several heads

$$f^{(i)}(\mathbf{x}; \theta_{\text{base}}, \theta_{\text{head}}^{(i)}) = f^{(i)}_{\text{head}}(\phi(\mathbf{x}; \theta_{\text{base}}); \theta_{\text{head}}^{(i)})$$

• Diverse predictions are enforced by function-space repulsive loss

[So23] S. Steger, B. Klein, H. Fröning and F. Pernkopf. Lightweight Uncertainty Modelling Using Function Space Particle Optimization. submitted, 2023.

³⁰ Single Multi-headed Model (MH-f-POVI)

- Advantages
 - ✓ Modelling of aleatoric and epistemic uncertainty; uncertainty can be represented by output heads
 - ✓ Computationally efficient model
 - ✓ We can use pre-trained models (assuming good feature space representation)

Experiment & Results

² Synthetic Data

(a) Deep Ensemble

(b) MH-f-POVI

Figure 1: Predictions of deep ensembles and the proposed multi-head (MH) network with function space loss (MH-f-POVI). For regression, we show the prediction of single particles, the mean and the standard deviation. For classification on the two-moons data, we show the standard deviation of the predicted probabilities $p(\mathbf{y} \mid \mathbf{x}, \theta)$. Deep ensembles are overly confident in regions without training data, while MH-f-POVI predictions are enforced to be diverse outside of the training data.

Uncertainty and Evaluation Metrics

Uncertainty:

- Single model: softmax entropy $\mathbb{H}[p(\mathbf{y}|\mathbf{x}, \theta)]$
- Ensemble models and MH-f-POVI
 - ✓ Uncertainty decomposition: Quantify aleatoric and epistemic uncertainty as [Dep8]:

$$\underbrace{\mathbb{H}[\mathbb{E}_{p(\theta|\mathbf{X},\mathbf{Y})}[p(\mathbf{y}|\mathbf{x},\theta)]]}_{\text{predictive entropy}} = \underbrace{\mathbb{E}_{p(\theta|\mathbf{X},\mathbf{Y})}[\mathbb{H}[p(\mathbf{y}|\mathbf{x},\theta)]]}_{\text{Aleatoric}} + \underbrace{\mathbb{I}[\mathbf{y};\theta \mid \mathbf{x},\mathbf{X},\mathbf{Y}]}_{\text{epistemic}}$$

[Dep18] S. Depeweg, J.-M. Hernandez-Lobato, F. Doshi-Velez, and S. Udluft. Decomposition of uncertainty in Bayesian deep learning for efficient and risk-sensitive learning. pp. 1184–1193. PMLR, 2018

Uncertainty and Evaluation Metrics

Uncertainty:

- Single model: softmax entropy $\mathbb{H}[p(\mathbf{y}|\mathbf{x}, \theta)]$
- Ensemble models and MH-f-POVI
 - Uncertainty decomposition: Quantify aleatoric and epistemic uncertainty as [Dep18]:

$$\underbrace{\mathbb{H}[\mathbb{E}_{p(\theta|\mathbf{X},\mathbf{Y})}[p(\mathbf{y}|\mathbf{x},\theta)]]}_{\text{predictive entropy}} = \underbrace{\mathbb{E}_{p(\theta|\mathbf{X},\mathbf{Y})}[\mathbb{H}[p(\mathbf{y}|\mathbf{x},\theta)]]}_{\text{aleatoric}} + \underbrace{\mathbb{I}[\mathbf{y};\theta \mid \mathbf{x},\mathbf{X},\mathbf{Y}]}_{\text{epistemic}}$$

Reliability of uncertainty:

- Ability to detect out-of-domain (OOD) data
- AUROC between correctly identified in-domain (ID) samples and incorrect classified (ID) and OOD samples

[Dep18] S. Depeweg, J.-M. Hernandez-Lobato, F. Doshi-Velez, and S. Udluft. Decomposition of uncertainty in Bayesian deep learning for efficient and risk-sensitive learning. pp. 1184–1193. PMLR, 2018

Uncertainty Decomposition

Data

Uncertainty Decomposition

Histograms of aleatoric versus epistemic uncertainty on ID and OOD data

Uncertainty Decomposition

Uncertainty decomposition performance

	Method	Acc. (↑)	EPISTEMIC	MNIST vs f-MNIST.	Ambig. vs f-MNIST	Param. (1)
			UNCERTAINTY	AUROC (\uparrow)	AUROC (\uparrow)	(\psi)
	Single model	98.89%	Softmax Entropy Softmax Density	$98.42\%_{\pm 1.03}\\98.75\%_{\pm 0.72}$	$\begin{array}{c} 81.80\%_{\pm 7.01} \\ 84.33\%_{\pm 5.55} \end{array}$	100%
Dirty MNIST (ResNet-18)	$\begin{array}{l} \text{MH-f-POVI} \ (ours) \\ (\mathbf{x}_C \ = \ \text{KMNIST}) \end{array}$	99.20%	Pred. Entropy Mutual Inf.	$\frac{99.76}{99.64\%_{\pm 0.10}}$	$\frac{97.84\%_{\pm 0.84}}{\underline{99.52}\%_{\pm 0.17}}$	
	$\begin{array}{l} \text{MH-f-POVI} \ (ours) \\ (\mathbf{x}_C \ = \ \text{PATCHES}) \end{array}$	99.26%	Pred. Entropy Mutual Inf.	$\frac{99.80\%_{\pm 0.06}}{99.68\%_{\pm 0.11}}$	$\frac{97.88\%_{\pm 0.82}}{99.51}\%_{\pm 0.20}$	109.0%
	$\begin{array}{l} \text{MH-f-POVI} (ours) \\ (\mathbf{x}_C = \text{NOISE}) \end{array}$	99.19%	Pred. Entropy Mutual Inf.	$99.64\%_{\pm 0.14}$ $99.53\%_{\pm 0.17}$	$94.13\%_{\pm 2.44}\\98.41\%_{\pm 0.56}$	102 /0
	MH-POVI (ours)	<u>99.32</u> %	Pred. Entropy Mutual Inf.	$99.37\%_{\pm 0.50}\\99.21\%_{\pm 0.36}$	$90.53\%_{\pm 4.33}\\96.49\%_{\pm 1.54}$	
	5-Ensemble	99.37 %	Pred. Entropy Mutual Inf.	$99.55\%_{\pm 0.16}$ $98.62\%_{\pm 0.33}$	$\begin{array}{c} 92.13\%_{\pm 2.39} \\ 92.02\%_{\pm 3.03} \end{array}$	500%

Unce

1.15	noortointu	Dooon	aponition —	Dirty-MNIST (iD)				
U	ncentainty	Decon		MNIST Ambigue	ous-MNIST Fashion-MNIS	T (OoD)		
			4	70314	81.7			
Uncertainty decomposition performance								
	Method	Acc. (↑)	EPISTEMIC	MNIST vs f-MNIST.	Ambig. vs f-MNIST	Param. (\downarrow)		
			UNCERTAINTY	AUROC (↑)	AUROC (↑)			
Dirty MNIST (<i>ResNet-18</i>) W () W () W	Single model	98.89%	Softmax Entropy Softmax Density	$98.42\%{}_{\pm 1.03}{98.75\%}_{\pm 0.72}$	${}^{81.80\%_{\pm 7.01}}_{84.33\%_{\pm 5.55}}$	100%		
	$MH-f-POVI (ours) (\mathbf{x}_C = KMNIST)$	99.20%	Pred. Entropy Mutual Inf.	$\frac{99.76}{99.64}\%_{\pm 0.10}$	$\frac{97.84\%_{\pm 0.84}}{\underline{99.52}\%_{\pm 0.17}}$			
	$\begin{array}{l} \text{MH-f-POVI} (ours) \\ (\mathbf{x}_C = \text{PATCHES}) \end{array}$	99.26%	Pred. Entropy Mutual Inf.	$99.80\%_{\pm 0.06}$ $99.68\%_{\pm 0.11}$	$\frac{97.88\%_{\pm 0.82}}{99.51}\%_{\pm 0.20}$	102 %		
	$\begin{array}{l} \text{MH-f-POVI} \ (ours) \\ (\mathbf{x}_C \ = \ \text{NOISE}) \end{array}$	99.19%	Pred. Entropy Mutual Inf.	$99.64\%_{\pm 0.14}\\99.53\%_{\pm 0.17}$	$94.13\%_{\pm 2.44}\\98.41\%_{\pm 0.56}$	102 70		
	MH-POVI (ours)	<u>99.32</u> %	Pred. Entropy Mutual Inf.	$99.37\%_{\pm 0.50}\\99.21\%_{\pm 0.36}$	$90.53\%_{\pm 4.33}\\96.49\%_{\pm 1.54}$			
	5-Ensemble	99.37 %	Pred. Entropy Mutual Inf.	$99.55\%_{\pm 0.16}\\98.62\%_{\pm 0.33}$	$92.13\%_{\pm 2.39}\\92.02\%_{\pm 3.03}$	500%		

Dirty MNIST (ResNet-18)

Active Learning

- Training samples are iteratively acquired based on the epistemic uncertainty
- Most informative samples > high epistemic uncertainty
- After data acquisition, the model is retrained

Summary

Overview of NN methods for uncertainty estimation

- ✓ Single deterministic model
- ✓ Ensemble methods
- ✓ Bayesian neural networks
- ✓ Particle-optimization based variational inference
- ✓ Single multi-headed model

Results

- ✓ Uncertainty decomposition in aleatoric and epistemic uncertainty
- ✓ Multi-head model is able to detect out-of-domain data
- ✓ Active learning scenario
- ✓ Multi-headed model significantly reduce the model size

Questions?

"Topocolore"

Sources for Uncertainty and Error

- Variabiltiy in the real world
- Error and noise in measurement
- Error in DNN model structure
- Error in training

43

• Errors caused by unknown data

- Function-space particle methods
 - ✓ Repulsion term is evaluated at data points
- Where does it make sense to evaluate the NN functions for the repulsion term
 - ✓ Low-dimensional data: Evaluate NN on noisy data to cover input domain
 - ✓ High-dimensional data: Adding noise often does not make sense
- Instead of estimating the density of data in high-dimensional input space
 - ✓ Estimate density in feature space
 - ✓ Use Bi-Lipschitz constraints to preserve distance awareness

Methods for estimating uncertainty

[Gaw22] J. Gawlikowski et al. A Survey of Uncertainty in Deep Neural Networks. 2022.

Research Challenges in Machine Learning

46

pernkopf@tugraz.at