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Uncertainty in Deep Neural Networks
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• Deep neural networks (DNNs) achieve state-

of-the-art results in various domains

• Despite their predictive performance            

limited usability in safety-critical 

applications

Motivation

[Gaw22] J. Gawlikowski et al. A Survey of Uncertainty in Deep Neural Networks. 2022.
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• Deep neural networks (DNNs) achieve state-

of-the-art results in various domains

• Despite their predictive performance            

limited usability in safety-critical 

applications

• Main factors:

• Overcome these limitations:

Essential to provide reliable uncertainty 

estimates

Motivation

✓ Lack of transparency of DNN’s inference

✓ Inability to distinguish between in-domain

and out-of-domain (OOD) samples

✓ Sensitivity to domain shifts

✓ Inability to provide reliable uncertainty estimates

✓ Sensitivity to adversarial attacks

[Gaw22] J. Gawlikowski et al. A Survey of Uncertainty in Deep Neural Networks. 2022.
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Uncertainty Modeling

Predictive uncertainty of a DNN is composed by:

▪ Aleatoric uncertainty: Captures noise 

inherent in the data (not reduceable)

▪ Epistemic uncertainty: Uncertainty in the 

model due to lack of knowledge and data; can be reduced by  

more data
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• Variabiltiy in the real world

Sources for Uncertainty and 

Error

✓ Distribution shift
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• Variabiltiy in the real world

• Error and noise in measurement

✓ Distribution shift

✓ Sensor noise

✓ Label noise

Sources for Uncertainty and 

Error
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• Variabiltiy in the real world

• Error and noise in measurement

• Error in DNN model structure
✓ Architecture & size

✓ Deep vs. shallow

✓ Distribution shift

✓ Sensor noise

✓ Label noise

Sources for Uncertainty and 

Error
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• Variabiltiy in the real world

• Error and noise in measurement

• Error in DNN model structure

• Error in training

✓ Architecture & size

✓ Deep vs. shallow

✓ Many parameters to tune: batch size, optimizer, 

learning rate, regularizer etc.

✓ Lack in training data: imbalance, coverage, size

✓ Distribution shift

✓ Sensor noise

✓ Label noise

Sources for Uncertainty and 

Error
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• Variabiltiy in the real world

• Error and noise in measurement

• Error in DNN model structure

• Error in training

• Errors caused by unknown data

✓ Architecture & size

✓ Deep vs. shallow

✓ Out-of-domain (OOD) data

✓ Many parameters to tune: batch size, optimizer, 

learning rate, regularizer etc.

✓ Lack in training data: imbalance, coverage, size

✓ Distribution shift

✓ Sensor noise

✓ Label noise

Sources for Uncertainty and 

Error
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Methods for uncertainty estimation:

✓ Single deterministic models

✓ Bayesian neural networks

✓ Ensemble methods

✓ Particle-optimization based variational inference

✓ Single multi-headed model

Some experiments & results

Outline

[Gaw22] J. Gawlikowski et al. A Survey of Uncertainty in Deep Neural Networks. 2022.
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• Class probabilities of a single (deterministic) network (with softmax

output layer) can be interpreted as uncertainty

• These uncertainties are over-confident

uncertainties are poorly calibrated

Single Deterministic Methods



1212

• Spectral-normalized Neural Gaussian Process (SNGP) [Liu20]

Single Deterministic Methods

1) Deep feature extractor for input transformation

2)  Gaussian process at output layer (Laplace approximation)
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Deep Feature Extractor

[Liu20] J. Liu, Z. Lin, A. Padhy, D. Tran, T. Bedrax Weiss, Tania and B. Lakshminarayanan, Simple and Principled 

Uncertainty Estimation with Deterministic Deep Learning via Distance Awareness, NeurIPS 2020.
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• Spectral-normalized Neural Gaussian Process (SNGP)

• Important: Ensure distance awareness in feature space

Bi-Lipschitz constraint on deep feature extractor

Single Deterministic Methods

1) Deep feature extractor for input transformation

2)  Gaussian process at output layer (Laplace approximation)
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Distance in 

feature space

Distance in

input space



1414

G
a

u
s
s
ia

n
 P

ro
c
e

s
s

Deep Feature Extractor

• Important: Bi-Lipschitz constraint on deep feature extractor [Liu20, AmS21]

spectral normalization of weights (i.e. largest singular value ≤1)

residual connections

[Liu20] J. Liu, Z. Lin, A. Padhy, D. Tran, T. Bedrax Weiss, Tania and B. Lakshminarayanan, Simple and Principled 

Uncertainty Estimation with Deterministic Deep Learning via Distance Awareness, NeurIPS 2020.

[AmS21] van Amersfoort, J., Smith, L., Jesson, A., Key, O., & Gal, Y. “On feature collapse and deep kernel learning for 

single forward pass uncertainty”. arXiv preprint arXiv:2102.11409, 2021

Single Deterministic Methods

✓ Feature representation is sensitive to changes in input (no feature collapse)

✓ Feature representation is smooth              generalization and robustness
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• Spectral-normalized Neural Gaussian Process (SNGP)

Uncertainty on two moons data set:

Cannot disentangle aleatoric and epistemic uncertainty

▪ Instead of Gaussian Process other models have been used as well

Single Deterministic Methods

ResNet + Softmax Spectral-normalized Neural 

Gaussain Process

High 

uncertainty

Low

uncertainty
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Ensemble Methods
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• Several randomly initialized networks are trained 

• Prediction/uncertainty estimation: Output of ensemble members is 

combined

Ensemble Networks



1818

Bayesian neural networks
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• Integral for prediction is approximated by Monte Carlo averaging           

• Posterior distribution is intractable approximate inference

Bayesian Neural Network

▪ Network parameters 

▪ training data

▪ Posterior:

▪ Prediction:  
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• Sampling based methods

Methods for approximating the weight posterior distribution

✓ Hamiltonian-Monte-Carlo (HMC) sampling                   

✓ Considered as the "gold-standard" solution

✓ Enormous run-time required for good estimate
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• Sampling based methods

• Variational inference (VI)

Methods for approximating the weight posterior distribution

✓ Hamiltonian-Monte-Carlo (HMC) sampling                   

✓ Considered as the "gold-standard" solution

✓ Enormous run-time required for good estimate

✓ Approximate multi-modal posterior with 

oversimplified tractable distribution (e.g., factorized 

uni-modal Gaussians) 

✓ Limits approximation quality
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• Sampling based methods

• Variational inference (VI)

• Particle-optimization-based VI (POVI)

Methods for approximating the weight posterior distribution

✓ Hamiltonian-Monte-Carlo (HMC) sampling                   

✓ Considered as the "gold-standard" solution

✓ Enormous run-time required for good estimate

✓ Approximate multi-modal weight posterior with 

oversimplified tractable distribution (e.g., factorized 

uni-modal Gaussians) 

✓ Limits approximation quality

✓ Iteratively updates a set of particles, such that its 

empirical probability measure approximates the 

correct posterior
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Particle-optimization-based Variational Inference
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• Weight-space particle methods (POVI)

Particle-optimization-based Variational Inference

✓ Considers n weight configurations of a neural network:

✓ Weights are updated using gradient of the posterior:

✓ Predictions of members are combined: Bayesian model averaging

✓ Problem: Particles may converge to same mode of posterior

Learning rate

[DAF21] F. D'Angelo, V. Fortuin, “Repulsive Deep Ensembles are Bayesian.” NeurIPS, 2021
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• Weight-space particle methods (POVI)

• Repulsive component to maintain diversity (inspired by SVGD)

Particle-optimization-based Variational Inference

✓ Considers n weight configurations of a neural network:

✓ Weights are updated using gradient of the posterior:

✓ Predictions of members are combined: Bayesian model averaging

✓ Problem: Particles may converge to same mode of posterior

Learning rate

✓ e.g. RBF kernel

✓ Gradient of kernel moves particles away from close neighbors 

[DAF21] F. D'Angelo, V. Fortuin, “Repulsive Deep Ensembles are Bayesian.” NeurIPS, 2021



2626 Particle-optimization-based Variational Inference
✓ Problem: Over-parameterized models may have different weights which 

map to the same function loss of diversity in ensemble
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• Function-space particle methods (f-POVI)

• Functional diversity

Particle-optimization-based Variational Inference

✓ Formulation in function space [Wan19]: Particles represent functions

✓ Function space is parameterized by network

✓ Optimization requires approximations…

✓ Repulsion term is evaluated at data points

✓ Problem: Over-parameterized models may have different weights which 

map to the same function loss of diversity in ensemble

✓ Good for predictions  

✓ Good for uncertainty estimation

[Wan19] Z. Wang, T. Ren, J. Zhu, and B. Zhang. Function space particle optimization for 

Bayesian neural networks. ICLR, 2019.
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Single Multi-headed Model



2929 Single Multi-headed Model (MH-f-POVI)

• Combining Ideas

1) Deep feature extractor for input transformation

2)  Function-space POVI on feature space for stochastic output layers

• Model is composed of a shared base model and several heads

• Diverse predictions are enforced by function-space repulsive loss

[So23] S. Steger, B. Klein, H. Fröning and F. Pernkopf. Lightweight Uncertainty Modelling Using Function 

Space Particle Optimization. submitted, 2023.

Deep Feature 

Extractor

Multi-head



3030 Single Multi-headed Model (MH-f-POVI)

• Advantages

✓ Modelling of aleatoric and epistemic uncertainty; 

uncertainty can be represented by output heads

✓ Computationally efficient model 

✓ We can use pre-trained models (assuming good 

feature space representation)
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Experiment & Results



3232 Synthetic Data



3333 Uncertainty and Evaluation Metrics

Uncertainty:

• Single model: softmax entropy

• Ensemble models and MH-f-POVI 

✓ Uncertainty decomposition: Quantify aleatoric and 

epistemic uncertainty as [Dep8]:

[Dep18] S. Depeweg, J.-M. Hernandez-Lobato, F. Doshi-Velez, and S. Udluft. Decomposition of 

uncertainty in Bayesian deep learning for efficient and risk-sensitive learning. pp. 1184–1193. PMLR, 2018



3434 Uncertainty and Evaluation Metrics

Uncertainty:

• Single model: softmax entropy

• Ensemble models and MH-f-POVI 

Reliability of uncertainty:

• Ability to detect out-of-domain (OOD) data

• AUROC between correctly identified in-domain (ID) samples and incorrect

classified (ID) and OOD samples

✓ Uncertainty decomposition: Quantify aleatoric and 

epistemic uncertainty as [Dep18]:

[Dep18] S. Depeweg, J.-M. Hernandez-Lobato, F. Doshi-Velez, and S. Udluft. Decomposition of 

uncertainty in Bayesian deep learning for efficient and risk-sensitive learning. pp. 1184–1193. PMLR, 2018



3535 Uncertainty Decomposition

Data



3636 Uncertainty Decomposition

Histograms of aleatoric versus epistemic uncertainty on ID and OOD data

Aleatoric uncertainty

Aleatoric uncertainty Aleatoric uncertainty
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3737 Uncertainty Decomposition

Uncertainty decomposition performance



3838 Uncertainty Decomposition

Uncertainty decomposition performance



3939 Active Learning

• Training samples are iteratively acquired based on the epistemic 

uncertainty

• Most informative samples              high epistemic uncertainty

• After data acquisition, the model is retrained

SNGP
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Overview of NN methods for uncertainty estimation
✓ Single deterministic model

✓ Ensemble methods

✓ Bayesian neural networks

✓ Particle-optimization based variational inference

✓ Single multi-headed model

Results
✓ Uncertainty decomposition in aleatoric and epistemic uncertainty

✓ Multi-head model is able to detect out-of-domain data

✓ Active learning scenario

✓ Multi-headed model significantly reduce the model size

Summary



4141
Intelligent Systems Research Group 
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• Variabiltiy in the real world

• Error and noise in measurement

• Error in DNN model structure

• Error in training

• Errors caused by unknown data

CIFAR10

Sources for Uncertainty and 

Error
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• Function-space particle methods

• Where does it make sense to evaluate the NN functions for the 

repulsion term

• Instead of estimating the density of data in high-dimensional input 

space

Particle-optimization-based Variational Inference

✓ Repulsion term is evaluated at data points

✓ Low-dimensional data: Evaluate NN on noisy data to cover input domain

✓ High-dimensional data: Adding noise often does not make sense

✓ Estimate density in feature space

✓ Use Bi-Lipschitz constraints to preserve distance awareness



4545 Methods for estimating uncertainty

[Gaw22] J. Gawlikowski et al. A Survey of Uncertainty in Deep Neural Networks. 2022.
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Research Challenges in Machine Learning

Applications

Feature 

Representation

& 

Architecture 

Limited Data

Outlier in Data

Domain Shifts

Uncertainty 
Modelling

Model 
Explainability
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