

 \blacktriangleright www.spsc.tugraz.at

pernkopf@tugraz.at

Motivation

- Deep neural networks (DNNs) achieve stateof-the-art results in various domains
- Despite their predictive performance

limited usability in safety-critical applications

Motivation

3

- Deep neural networks (DNNs) achieve stateof-the-art results in various domains
- Despite their predictive performance
	- limited usability in safety-critical applications
- Main factors:
	- \checkmark Lack of transparency of DNN's inference
	- \checkmark Inability to distinguish between in-domain and out-of-domain (OOD) samples
	- \checkmark Sensitivity to domain shifts
	- \checkmark Inability to provide reliable uncertainty estimates
	- \checkmark Sensitivity to adversarial attacks
- Overcome these limitations:

Essential to provide reliable uncertainty estimates

[Gaw22] J. Gawlikowski et al. A Survey of Uncertainty in Deep Neural Networks. 2022.

Uncertainty Modeling

Predictive uncertainty of a DNN is composed by:

- **Aleatoric uncertainty**: Captures noise inherent in the data (not reduceable)
- **Epistemic uncertainty**: Uncertainty in the model due to lack of knowledge and data; can be reduced by more data

- Variabiltiy in the real world
	- ✓ Distribution shift

- Variabiltiy in the real world
	- ✓ Distribution shift
- Error and noise in measurement
	- ✓ Sensor noise
	- ✓ Label noise

- Variabiltiy in the real world
	- ✓ Distribution shift
- Error and noise in measurement
	- \checkmark Sensor noise
	- ✓ Label noise
- **Error in DNN model structure**
	- \checkmark Architecture & size
	- \checkmark Deep vs. shallow

- Variabiltiy in the real world
	- ✓ Distribution shift
- Error and noise in measurement
	- ✓ Sensor noise
	- ✓ Label noise
- Error in DNN model structure
	- \checkmark Architecture & size
	- \checkmark Deep vs. shallow
- **Error in training**
	- \checkmark Many parameters to tune: batch size, optimizer, learning rate, regularizer etc.
	- \checkmark Lack in training data: imbalance, coverage, size

- Variabiltiy in the real world
	- ✓ Distribution shift
- Error and noise in measurement
	- ✓ Sensor noise
	- ✓ Label noise
- Error in DNN model structure
	- \checkmark Architecture & size
	- \checkmark Deep vs. shallow
- **Error in training**
	- \checkmark Many parameters to tune: batch size, optimizer, learning rate, regularizer etc.
	- \checkmark Lack in training data: imbalance, coverage, size
- Errors caused by unknown data
	- ✓ Out-of-domain (OOD) data

Outline

10

Methods for uncertainty estimation:

- \checkmark Single deterministic models
- ✓ Bayesian neural networks
- \checkmark Ensemble methods

- ✓ Particle-optimization based variational inference
- ✓ Single multi-headed model

Some experiments & results

[Gaw22] J. Gawlikowski et al. A Survey of Uncertainty in Deep Neural Networks. 2022.

- Class probabilities of a single (deterministic) network (with softmax output layer) can be interpreted as uncertainty
- These uncertainties are over-confident
	- \Rightarrow uncertainties are poorly calibrated

Fig. 5: Predictions received from a LeNet network trained on MNIST's handwritten digits from 0 to 9 and evaluated on different rotations of test samples.

- Spectral-normalized Neural Gaussian Process (SNGP) [Liu20]
	- 1) Deep feature extractor for input transformation
	- 2) Gaussian process at output layer (Laplace approximation)

[Liu20] J. Liu, Z. Lin, A. Padhy, D. Tran, T. Bedrax Weiss, Tania and B. Lakshminarayanan, Simple and Principled Uncertainty Estimation with Deterministic Deep Learning via Distance Awareness, NeurIPS 2020.

- Spectral-normalized Neural Gaussian Process (SNGP)
	- 1) Deep feature extractor for input transformation
	- 2) Gaussian process at output layer (Laplace approximation)

Important: Bi-Lipschitz constraint on deep feature extractor [Liu20, AmS21] spectral normalization of weights (i.e. largest singular value ≤1) residual connections

Single Deterministic Methods

A 2D classification task where the classes are two Gaussian blobs (drawn in green)

Feature representation is sensitive to changes in input (no feature collapse) Feature representation is smooth generalization and robustness

[Liu20] J. Liu, Z. Lin, A. Padhy, D. Tran, T. Bedrax Weiss, Tania and B. Lakshminarayanan, Simple and Principled Uncertainty Estimation with Deterministic Deep Learning via Distance Awareness, NeurIPS 2020. [AmS21] van Amersfoort, J., Smith, L., Jesson, A., Key, O., & Gal, Y. "On feature collapse and deep kernel learning for single forward pass uncertainty". *arXiv preprint arXiv:2102.11409*, 2021

15

• Spectral-normalized Neural Gaussian Process (SNGP)

Uncertainty on two moons data set:

Ensemble Methods

17 Ensemble Networks

- Several randomly initialized networks are trained
- Prediction/uncertainty estimation: Output of ensemble members is combined

Bayesian neural networks

Bayesian Neural Network

- Network parameters θ
- $D = {\mathbf{x}_i, \mathbf{y}_i}_{i=1}^N = (\mathbf{X}, \mathbf{Y})$ training data
- Posterior: $p(\theta|\mathbf{X}, \mathbf{Y}) \propto \prod_{i=1}^{n} p(\mathbf{y}_i|f(\mathbf{x}_i; \theta)) p(\theta)$
- **•** Prediction: $p(\boldsymbol{y}^*|\boldsymbol{x}^*, \mathcal{D}) = \int p(\boldsymbol{y}^*|f(\boldsymbol{x}^*; \theta)) p(\theta|\mathcal{D}) d\theta$
- Integral for prediction is approximated by Monte Carlo averaging
- Posterior distribution is intractable **substitution** approximate inference

Methods for approximating the weight posterior distribution

- Sampling based methods
	- ✓ Hamiltonian-Monte-Carlo (HMC) sampling
	- \checkmark Considered as the "gold-standard" solution
	- \checkmark Enormous run-time required for good estimate

Methods for approximating the weight posterior distribution

- Sampling based methods
	- ✓ Hamiltonian-Monte-Carlo (HMC) sampling
	- \checkmark Considered as the "gold-standard" solution
	- \checkmark Enormous run-time required for good estimate
- Variational inference (VI)
	- \checkmark Approximate multi-modal posterior with oversimplified tractable distribution (e.g., factorized uni-modal Gaussians)
	- \checkmark Limits approximation quality

Methods for approximating the weight posterior distribution

- Sampling based methods
	- ✓ Hamiltonian-Monte-Carlo (HMC) sampling
	- \checkmark Considered as the "gold-standard" solution
	- \checkmark Enormous run-time required for good estimate
- Variational inference (VI)
	- \checkmark Approximate multi-modal weight posterior with oversimplified tractable distribution (e.g., factorized uni-modal Gaussians)
	- \checkmark Limits approximation quality
- Particle-optimization-based VI (POVI)
	- \checkmark Iteratively updates a set of particles, such that its empirical probability measure approximates the correct posterior

- Weight-space particle methods (POVI)
	- ✓ Considers *n* weight configurations of a neural network: $\{\theta^{(i)}\}_{i=1}^n$
	- \checkmark Weights are updated using gradient of the posterior:

$$
\theta_{l+1}^{(i)} \leftarrow \theta_l^{(i)} - \epsilon_l \mathbf{y}(\theta_l^{(i)})
$$
\nwith\n
$$
\mathbf{v}(\theta_l^{(i)}) = \nabla_{\theta_l^{(i)}} \log \underbrace{p(\theta_l^{(i)} \mid \mathbf{x})}_{\text{posterior}}
$$
\nLearning rate

- ✓ Predictions of members are combined: Bayesian model averaging
- ✓ Problem: Particles may converge to same mode of posterior

- Weight-space particle methods (POVI)
	- ◯ Considers *n* weight configurations of a neural network: $\{\theta^{(i)}\}_{i=1}^n$
	- ✓ Weights are updated using gradient of the posterior:

$$
\theta_{l+1}^{(i)} \leftarrow \theta_l^{(i)} - \epsilon_l \underline{\mathbf{v}}(\theta_l^{(i)})
$$
\nwith\n
$$
\mathbf{v}(\theta_l^{(i)}) = \nabla_{\theta_l^{(i)}} \log \underbrace{p(\theta_l^{(i)} \mid \mathbf{x})}_{\text{posterior}}
$$
\nLearning rate

- ✓ Predictions of members are combined: Bayesian model averaging
- ✓ Problem: Particles may converge to same mode of posterior
- Repulsive component to maintain diversity (inspired by SVGD)

$$
\mathbf{v}(\theta_l^{(i)}) = \nabla_{\theta_l^{(i)}} \log \underbrace{p(\theta_l^{(i)} \mid \mathbf{x})}_{\text{posterior}} - \mathcal{R}\left(\ \sum_{j=1}^n \nabla_{\theta_l^{(i)}} k\left(\theta_l^{(i)}, \theta_l^{(j)}\right)\right)
$$

 \checkmark e.g. RBF kernel

 \checkmark Gradient of kernel moves particles away from close neighbors

[DAF21] F. D'Angelo, V. Fortuin, "Repulsive Deep Ensembles are Bayesian." NeurIPS, 2021

- ²⁶ Particle-optimization-based Variational Inference
	- ✓ Problem: Over-parameterized models may have different weights which map to the same function \Box loss of diversity in ensemble

- Particle-optimization-based Variational Inference
- \checkmark Problem: Over-parameterized models may have different weights which map to the same function \Box loss of diversity in ensemble
- Function-space particle methods (f-POVI)
	- \checkmark Formulation in function space [Wan19]: Particles represent functions $f^{(1)}(\mathcal{X}), \ldots, f^{(n)}(\mathcal{X})$
	- \checkmark Function space is parameterized by network $f(\mathcal{X}; \theta_l)$
	- Optimization requires approximations...
	- \checkmark Repulsion term is evaluated at data points

[Wan19] Z. Wang, T. Ren, J. Zhu, and B. Zhang. Function space particle optimization for Bayesian neural networks. ICLR, 2019.

Single Multi-headed Model

²⁹ Single Multi-headed Model (MH-f-POVI)

- Combining Ideas
	- Deep feature extractor for input transformation
	- 2) Function-space POVI on feature space for stochastic output layers

• Model is composed of a shared base model and several heads

$$
f^{(i)}(\mathbf{x};\theta_{\text{base}},\theta_{\text{head}}^{(i)}) = f_{\text{head}}^{(i)}(\phi(\mathbf{x};\theta_{\text{base}}); \theta_{\text{head}}^{(i)})
$$

• Diverse predictions are enforced by function-space repulsive loss

[So23] S. Steger, B. Klein, H. Fröning and F. Pernkopf. Lightweight Uncertainty Modelling Using Function Space Particle Optimization. submitted, 2023.

³⁰ Single Multi-headed Model (MH-f-POVI)

- **Advantages**
	- \checkmark Modelling of aleatoric and epistemic uncertainty; uncertainty can be represented by output heads
	- ✓ Computationally efficient model
	- \checkmark We can use pre-trained models (assuming good feature space representation)

Experiment & Results

³² Synthetic Data

(a) Deep Ensemble

(b) MH-f-POVI

Figure 1: Predictions of deep ensembles and the proposed multi-head (MH) network with function space loss (MH-f-POVI). For regression, we show the prediction of single particles, the mean and the standard deviation. For classification on the two-moons data, we show the standard deviation of the predicted probabilities $p(y | x, \theta)$. Deep ensembles are overly confident in regions without training data, while MH-f-POVI predictions are enforced to be diverse outside of the training data.

³³ Uncertainty and Evaluation Metrics

Uncertainty:

- Single model: softmax entropy $\mathbb{H}[p(\mathbf{y}|\mathbf{x},\theta)]$
- Ensemble models and MH-f-POVI
	- ✓ Uncertainty decomposition: Quantify aleatoric and epistemic uncertainty as [Dep8]:

$$
\underbrace{\mathbb{H}[\mathbb{E}_{p(\theta|\mathbf{X},\mathbf{Y})}[p(\mathbf{y}|\mathbf{x},\theta)]]}_{\text{prebictive entropy}} = \underbrace{\mathbb{E}_{p(\theta|\mathbf{X},\mathbf{Y})}[\mathbb{H}[p(\mathbf{y}|\mathbf{x},\theta)]]}_{\text{aleatoric}} + \underbrace{\mathbb{I}[\mathbf{y};\theta \mid \mathbf{x}, \mathbf{X}, \mathbf{Y}]}_{\text{epistemic}}
$$

[Dep18] S. Depeweg, J.-M. Hernandez-Lobato, F. Doshi-Velez, and S. Udluft. Decomposition of uncertainty in Bayesian deep learning for efficient and risk-sensitive learning. pp. 1184–1193. PMLR, 2018

³⁴ Uncertainty and Evaluation Metrics

Uncertainty:

- Single model: softmax entropy $\mathbb{H}[p(\mathbf{y}|\mathbf{x},\theta)]$
- Ensemble models and MH-f-POVI
	- ✓ Uncertainty decomposition: Quantify aleatoric and epistemic uncertainty as [Dep18]:

$$
\underbrace{\mathbb{H}[\mathbb{E}_{p(\theta|\mathbf{X},\mathbf{Y})}[p(\mathbf{y}|\mathbf{x},\theta)]]}_{\text{prebictive entropy}} = \underbrace{\mathbb{E}_{p(\theta|\mathbf{X},\mathbf{Y})}[\mathbb{H}[p(\mathbf{y}|\mathbf{x},\theta)]]}_{\text{ALEATORIC}} + \underbrace{\mathbb{I}[\mathbf{y};\theta \mid \mathbf{x}, \mathbf{X}, \mathbf{Y}]}_{\text{EPISTEMIC}}
$$

Reliability of uncertainty:

- Ability to detect out-of-domain (OOD) data
- AUROC between correctly identified in-domain (ID) samples and incorrect classified (ID) and OOD samples

[Dep18] S. Depeweg, J.-M. Hernandez-Lobato, F. Doshi-Velez, and S. Udluft. Decomposition of uncertainty in Bayesian deep learning for efficient and risk-sensitive learning. pp. 1184–1193. PMLR, 2018

³⁵ Uncertainty Decomposition

Data

³⁶ Uncertainty Decomposition

Histograms of aleatoric versus epistemic uncertainty on ID and OOD data

³⁷ Uncertainty Decomposition

Uncertainty decomposition performance

³⁸ Uncertainty Decomposition

Dirty-MNIST (iD)

³⁹ Active Learning

- Training samples are iteratively acquired based on the epistemic uncertainty
- Most informative samples \longrightarrow high epistemic uncertainty
- After data acquisition, the model is retrained

Summary

Overview of NN methods for uncertainty estimation

- \checkmark Single deterministic model
- ✓ Ensemble methods
- \checkmark Bayesian neural networks
- \checkmark Particle-optimization based variational inference
- ✓ Single multi-headed model

Results

- \checkmark Uncertainty decomposition in aleatoric and epistemic uncertainty
- ✓ Multi-head model is able to detect out-of-domain data
- \checkmark Active learning scenario
- \checkmark Multi-headed model significantly reduce the model size

42 Questions?

"Copocosone"

- Variabiltiy in the real world
- Error and noise in measurement
- Error in DNN model structure
- Error in training

43

• Errors caused by unknown data

- Function-space particle methods
	- \checkmark Repulsion term is evaluated at data points
- Where does it make sense to evaluate the NN functions for the repulsion term
	- \checkmark Low-dimensional data: Evaluate NN on noisy data to cover input domain
	- ✓ High-dimensional data: Adding noise often does not make sense
- Instead of estimating the density of data in high-dimensional input space
	- \checkmark Estimate density in feature space
	- ✓ Use Bi-Lipschitz constraints to preserve distance awareness

⁴⁵ Methods for estimating uncertainty

[Gaw22] J. Gawlikowski et al. A Survey of Uncertainty in Deep Neural Networks. 2022.

Research Challenges in Machine Learning

pernkopf@tugraz.at