

My Ph.D.: Interpretable Fault Prediction

Ph.D. finish line: 19th of January

Main contribution:

- Breakdown prediction in CLIC RF cavities
 - Field emitted current following an initial breakdown is related to the probability of another breakdown occurring
 - C. Obermair et al., "Explainable Machine Learning for Breakdown Prediction in High Gradient RF Cavities", PRAB, 2022
- Interpreting ML models for fault prediction
 - Novel method for explaining fault predictions with ML, evaluation with 75 people from CERN and TU Graz
 - C. Obermair et al., "Example or Prototype? Learning Concept-Based Explanations in Time-Series", PMLR, 2022
- Interpretable Anomaly Detection in the LHC Main Dipole Circuit
 - Understand **normal behavior** and detect **non-normal behavior** in voltage measured at the diode after a FPA
 - C. Obermair et al., "Interpretable Anomaly Detection in the LHC Main Dipole Circuits with Non-negative Matrix Factorization", to be submitted to IEEE, 2024

Interpretable Anomaly Detection in the LHC Main Dipole Circuit with Non-Negative Matrix Factorization

Christoph Obermair, TE-MPE-CB

Acknowledgement: Andrea Apollonio, TE-MPE-CB Zinour Charifoulline, TE-MPE-PE Lukas Felsberger, TE-MPE-CB Marvin Janitschke, TE-MPE-PE Aleksandra Mnich, TE-MPE-PE Franz Pernkopf, TU-Graz Emmanuele Ravaioli, TE-MPE-PE Arjan Verweij, TE-MPE-PE Daniel Wollmann, TE-MPE-CB Mariusz Wozniak, TE-MPE-PE

Goal: Define and understand normal behavior, detect abnormal behavior of the main dipole (RB) circuit

Approach:

- 1. Extract frequencies in data → Fast Fourier transform (FFT)
- 2. Group expected frequencies that occur together into components → Non-Negative Matrix Factorization (NMF)
 - a) Components help to understand normal behavior → Causal Discovery
 - b) Deviations help to detect **abnormal** behavior \rightarrow **Outlier detection**

Select data 1

Signal:

• U_diode from nQPS in PM

Region:

Plateaus after energy extraction
 → Similar to transient measurement

Period:

• 2018, Quench + Snapshot data

Data size:

• 731 events x 154 magnets x 400 samples (0.375s)

Fast Fourier transform

Extract frequencies in data

Fast Fourier transform

Example signal: B21R3 on 2021-04-18 08:44:17

Preprocessing necessary to minimize spectral leakage:

- Subtract offset
- Multiplication with window

Non-Negative Matrix Factorization (NMF)

Group expected frequencies that occur together into components

- a) Components help to understand normal behavior → Causal Discovery
- b) Deviations help to detect **abnormal** behavior \rightarrow **Outlier detection**

https://www.nature.com/articles/44565

https://proceedings.neurips.cc/paper/2000/file/f9d1152547c0bde01830b7e8bd60024c-Paper.pdf

How to define $W_k \& h_k$?

1. Manually define r

Graz

2. Initialize W_k & h_k randomly

intelligent systems

3. Adjust $W_k \& h_k$ iterativly until loss over all signals (763 * 154 * 2= 235 004) is minimal

Example signal: B21R3 on 2021-04-18 08:44:17

NMF Components

Causal Discovery

Understand normal behavior

Causal Discovery

Frequency components along all magnets in event

Normal event

Outlier Detection

Detect **abnormal** behavior

Outlier Detection

Components state frequencies, **expected** to occur Normal event: Reconstruction with components possible (low loss) Outlier event: **Unexpected** frequencies occur (high loss)

How to find an outlier:

- 1. Calculate NMF loss for each event (763)
- 2. Fit gamma distribution to loss
- 3. Calculate p value for each event (763)
 - \rightarrow probability of obtaining results at least as extreme as the observed

Outliers

Goal: Find outliers robust to assumptions

- Result shows boxplot of 280 different combinations of assumptions ٠
- All outliers occur during 1^{st} EE Plateau \rightarrow closer in time to quench ٠

Maintenance

Actions

Conclusion

Causal Discovery:

- Detection of "normal" frequency components with Non-Negative Matrix
 Factorization
 - \rightarrow Depending on the quench position, a typical FPM would look like this:

Outlier Detection:

- Outliers are events which cannot be composed out of "normal" frequency components
- Ongoing additional measurements, additional safety measures, possible
 replacement

Understand where **experts** can profit from data analysis!

Ongoing ML projects:

- U_diode NXCALS data
 - Investigation of secondary quenches
- mb-feature-classification
 - Make decisions: Gather RB machine parameters and analysis results
 - Find correlations with ML
- UQS0 signal classification
 - Classify ~35000 UQS0 signals from snapshot FPAs similar as experts
 - 80% of signals are classified similarly
 - In the remaining 20%, ML was right in 90%
- SOH prediction in capacitor banks
 - Assisting Timm Baumann SY/EPC

Backup Slides

Aliasing

High frequency components could potentially cause **aliasing in results**. Anti-aliasing filters in the nQPS crates:

- Two 1st order lowpass filters with 1.5 kHz and 1 kHz cutoff frequency*
- Sampling frequency of nQPS crates: 1068 Hz

Aliasing Examples

Fast Fourier transform

Fast Fourier transform

 \rightarrow The FFT is an algorithm to calculate the discrete Fourier transform (DFT). The DFT is defined as:

1.0

0.8

0.6

0.4 -

1.0

0.8

0.6 -

- hanning

--- bartlett

0.25 0.30 0.35 0.40 0.45 0.50 0.55 Time / s

→ Smearing of DC component interferes with low frequency component

$x[n] = 2V + 2V * \sin(2\pi 3Hz * n - 90^{\circ}) + \sin(2\pi 20Hz * n)$

Backwards Path

Signal: B21R3 on 2021-04-18 08:44:17

_____ x*[n]

0.004

Non-Negative Matrix Factorization (NMF)

https://www.nature.com/articles/44565 https://proceedings.neurips.cc/paper/2000/file/f9d1152547c0bde01830b7e8bd60024c-Paper.pdf

Objective Function

$V \approx WH$

m ... number of *i* events * positions (560 x 154) n ... number of frequencies (0-360Hz) r ... number of components (1-5) $V \in \mathbb{R}^{n \times m}_+$... reconstructed event at position $W \in \mathbb{R}^{n \times r}_+$... components $H \in \mathbb{R}^{r \times m}_+$... presence of components

NMF Objective Function: $\min_{W,H} f(W,H) \equiv \frac{1}{2} ||V - WH||_{F}^{2}, \text{ s.t. } W, H \ge 0$

Backwards Path

Signal: B21R3 on 2021-04-18 08:44:17

Causal Discovery

El. Vs Phys. Position

U-diode frequencies

Component	Dominant Frequencies	Location of Maximum	Average Maximum Amplitude	Propagation	Possible Physical Process
1 Fig. 7b	3 Hz	Phys. & el. neighbors of quenched magnet	6.2e-2 V	Phys. & el. position	Electromagnetic perturbation
0		-	4.9e-3 V	-	Preprocessing
2 Fig. 7c	6 Hz	Phys. & el. neighbors of quenched magnet	3.6e-2 V	Phys. & el. position	Electromagnetic perturbation
3 Fig. <mark>7d</mark>	20 Hz	Constant across all magnets	1.4e-2 V	Constant across all magnets	Diode induced oscillation
		Phys. & el. neighbors of quenched magnet	3.7e-3 V	Phys. & el. position	Electromagnetic perturbation
		Phys. & el. neighbors of power converter	1.2e-3 V	Phys. & el. position	Leftover voltage waves traveling along the chain of magnets by magnet impedance
4 Fig. 7e	66 Hz 184 Hz 302 Hz	Phys. neighbors of quenched magnet	7.3e-2 V	E1. position	Oscillations caused by quench
5 Fig. 7f	150 Hz	El. neighbors of EE systems	1.0e-3 V	Position in QDS measurement unit	Artifact of the QDS measurement unit
6 Fig. <mark>7g</mark>	107 Hz 220 Hz 260 Hz 370 Hz 478 Hz	Phys. & el. neighbors of PC	6.9e-4 V	El. position	Passive hardware elements of PC
7 Fig. 7h	Offset	Phys. & el. neighbors of quenched magnet	3.9e-3 V	Phys. & el. position	Quench heater induced oscillation
		Phys. & el. neighbors of quenched magnet	9.9e-4 V	Phys. position	Quench dependent oscillations

3Hz Examples

Quenched Magnet: C17L5 (Manufacturer 1)

Quenched Magnet: C32L2 (Manufacturer 1)

RB RB.A12 1619462088820000000 2021-04-26

U_Diode @ 1st EE plateau

er 1) Quenched Magnet: A32L4 (Manufacturer 1)

Quenched Magnet: C14L2 (Manufacturer 1) RB_RB.A12_161993595586000000_2021-05-02

Quenched Magnet: B11L2 (Manufacturer 1)

Quenched Magnet: B33R4 (Manufacturer 1) RB_RB.A45_1620232873800000000_2021-05-05

0.40

0.45

0.50

Time / s

0.55

0.60

0.65

0.35

-4.6

-4.8

V −5.0

-5.2

-5.4

It actually starts 1 QPS crate after the EE switches

Outlier Detection

Assumptions

Assumptions for this plot:

- Linear detrend
- Hamming window
- 4 components
- Frobenius distance

1. Preprocessing:

- 1. Degree of detrend:
 - 1. 0 Offset
 - 2. 1 Linear Trend
- 2. Window multiplication:
 - 1. none (best reconstruction, high smearing)
 - 2. hanning (lowest smearing, no reconstruction)
 - 3. hamming (low smearing , good reconstruction)
 - 4. barlett
 - 5. blackman
 - 6. flattop (high smearing, accurate amplitude)
 - 7. tukey

2. NMF:

CERN

- 1. n_components (2-12)
- 2. Distance measure*:
 - 1. Frobenius (Eu)

ntelligent systems

2. Kullback-Leibler (KL)

* https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6410389

2038 - RB.A78 - B28L8 – Intercoil short

Event with B28L8 quench before:

• 2021-03-28: "normal" at EE plateaus

FPA identifier: RB_RB.A78_1619330143440000000 Date: 2021-04-25 07:55:43.418000 Max. Current: 11588.0 A El. Position Primary Primary quench position: 126 Fast secondary quench: []

El. Position

<u>1225 - RB.A45 - C17L5</u>

Events with C17L5 quench before:

- 2021-05-07: "normal" at EE plateaus
- 2021-05-07: "normal" at EE plateaus

FPA identifier: RB_RB.A45_162079754782000000 Date: 2021-05-12 07:32:27.799000 Max. Current: 11701.0 A

40

60

20

El. Position Primary Primary quench position: 90 Fast secondary quench: []

U Diode Signals

80

El. Position

100

120

140

<u>1146 - RB.A34 - A32L4</u>

Events with A32L4 quench before:

- 2021-04-04: "normal" at EE plateaus
- 2021-04-14: 3 fast sec. quenches

FPA identifier: RB_RB.A34_162032372232000000 Date: 2021-05-06 19:55:22.295000 Max. Current: 11950.0 A

40

20

El. Position Primary Primary quench position: 120 Fast secondary quench: []

U_Diode Signals

80

El. Position

100

120

60

140

<u>1291 - RB.A12 - B11L2</u>

No B11L2 quench before

FPA identifier: RB_RB.A12_1621014819920000000 Date: 2021-05-14 19:53:39.901000 Max. Current: 11751.0 A El. Position Primary Primary quench position: 151 Fast secondary quench: []

<u>2421 - RB.A34 - B28R3</u>

No B28R3 quench before

Most likely scenario of noise from simulations:

- Partially emerging resistor, in parallel to diode
- Degraded diode contact?

FPA identifier: RB_RB.A34_1618896510960000000 Date: 2021-04-20 07:28:30.924000 Max. Current: 11786.3 A

40

60

20

U_Diode Signals

80

El. Position

120

100

140

