

My Ph.D.: Interpretable Fault Prediction

Ph.D. finish line: 19th of January

Main contribution:

- Breakdown prediction in CLIC RF cavities
	- Field emitted current following an initial breakdown is related to the probability of another breakdown occurring
	- C. Obermair et al., "Explainable Machine Learning for Breakdown Prediction in High Gradient RF Cavities", PRAB, 2022
- Interpreting ML models for fault prediction
	- Novel method for explaining fault predictions with ML, evaluation with 75 people from CERN and TU Graz
	- C. Obermair et al., "Example or Prototype? Learning Concept-Based Explanations in Time-Series", PMLR, 2022
- Interpretable Anomaly Detection in the LHC Main Dipole Circuit
	- Understand normal behavior and detect non-normal behavior in voltage measured at the diode after a FPA
	- C. Obermair et al., "Interpretable Anomaly Detection in the LHC Main Dipole Circuits with Non-negative Matrix Factorization", to be submitted to IEEE, 2024

Interpretable Anomaly Detection in the LHC Main Dipole Circuit with Non-Negative Matrix Factorization

Christoph Obermair, TE-MPE-CB

Acknowledgement: Andrea Apollonio, TE-MPE-CB Zinour Charifoulline, TE-MPE-PE Lukas Felsberger, TE-MPE-CB Marvin Janitschke, TE-MPE-PE Aleksandra Mnich, TE-MPE-CB Franz Pernkopf, TU-Graz Emmanuele Ravaioli, TE-MPE-PE Arjan Verweij, TE-MPE-PE Daniel Wollmann, TE-MPE-CB Mariusz Wozniak, TE-MPE-PE

Goal: Define and understand normal behavior, detect abnormal behavior of the main dipole (RB) circuit

Approach:

- 1. Extract frequencies in data \rightarrow Fast Fourier transform (FFT)
- 2. Group expected frequencies that occur together into components → Non-Negative Matrix Factorization (NMF)
	- a) Components help to understand normal behavior \rightarrow Causal Discovery
	- b) Deviations help to detect **abnormal** behavior \rightarrow Outlier detection

Signal:

• U_diode from nQPS in PM

Region:

• Plateaus after energy extraction \rightarrow Similar to transient measurement

Period:

• 2018, Quench + Snapshot data

Data size:

• 731 events x 154 magnets x 400 samples (0.375s)

Fast Fourier transform

Extract frequencies in data

Fast Fourier transform

Example signal: B21R3 on 2021-04-18 08:44:17

Preprocessing necessary to minimize spectral leakage:

- Subtract offset
- Multiplication with window

Non-Negative Matrix Factorization (NMF)

Group expected frequencies that occur together into components

- a) Components help to understand normal behavior \rightarrow Causal Discovery
- b) Deviations help to detect **abnormal** behavior \rightarrow Outlier detection

<https://www.nature.com/articles/44565>

<https://proceedings.neurips.cc/paper/2000/file/f9d1152547c0bde01830b7e8bd60024c-Paper.pdf>

Loss: $\sum_{k} (|X[k]| - \big| \widehat{X}[k] \big| \big)^2$

How to define W_k & h_k ?

Grāz

- 1. Manually define r
- 2. Initialize W_k & h_k randomly

intelligent systems

3. Adjust W_k & h_k iterativly until loss over all signals (763 * 154 * 2= 235 004) is minimal

Example signal: B21R3 on 2021-04-18 08:44:17

NMF Components

Causal Discovery

Understand normal behavior

Causal Discovery

Frequency components along all magnets in event

Outlier Detection

Detect abnormal behavior

Outlier Detection

Components state frequencies, expected to occur Normal event: Reconstruction with components possible (low loss) Outlier event: Unexpected frequencies occur (high loss)

How to find an outlier:

- 1. Calculate NMF loss for each event (763)
- 2. Fit gamma distribution to loss
- 3. Calculate p value for each event (763)
	- \rightarrow probability of obtaining results at least as extreme as the observed

Outliers

Goal: Find outliers robust to assumptions

- Result shows boxplot of 280 different combinations of assumptions
- All outliers occur during 1^{st} EE Plateau \rightarrow closer in time to quench

Conclusion

Causal Discovery:

- Detection of "normal" frequency components with Non-Negative Matrix Factorization
	- \rightarrow Depending on the quench position, a typical FPM would look like this:

Outlier Detection:

- Outliers are events which cannot be composed out of "normal" frequency components
- Ongoing additional measurements, additional safety measures, possible replacement

Understand where **experts** can profit from data analysis!

Ongoing ML projects:

- U diode NXCALS data
	- Investigation of secondary quenches
- [mb-feature-classification](https://gitlab.cern.ch/machine-protection/mb-feature-classification)
	- Make decisions: Gather RB machine parameters and analysis results
	- Find correlations with ML
- UQS0 signal classification
	- Classify ~35000 UQS0 signals from snapshot FPAs similar as experts
	- 80% of signals are classified similarly
	- In the remaining 20%, ML was right in 90%
- SOH prediction in capacitor banks
	- Assisting Timm Baumann SY/EPC

Backup Slides

Aliasing

High frequency components could potentially cause aliasing in results. Anti-aliasing filters in the nQPS crates:

- Two 1st order lowpass filters with 1.5 kHz and 1 kHz cutoff frequency*
- Sampling frequency of nQPS crates: 1068 Hz

Aliasing Examples

Fast Fourier transform

FFT Fast Fourier transform

 \rightarrow The FFT is an algorithm to calculate the discrete Fourier transform (DFT). The DFT is defined as:

 \rightarrow Avoid smearing

intelligent systems **CERN** Grāz

 1.0

 0.8

 0.6 $0.4 0.2 0.0$

 1.0

 0.8 $0.6 -$ - hanning

- bartlett

 0.25 0.30 0.35 0.40 0.45 0.50 0.55
Time / s

→ Smearing of DC component interferes with low frequency component

$x[n] = 2V + 2V * sin(2\pi 3Hz * n - 90^\circ) + sin(2\pi 20Hz * n)$

Backwards Path

Signal: B21R3 on 2021-04-18 08:44:17

 $\overline{5}$ -0.001 -0.002 -0.003 -0.004 0.25

 0.30

 0.35

 0.40

Time / s

 0.45

 0.50 0.55

 $\longrightarrow x^*[n]$

 $0.50 0.55$

 $\rightarrow x^*[n]$

 $\hat{x}_{FFT}^*[n]$

FFT

 $X[k]=\sum_{n=0}^{N-1}x^*[n]e^{-i2\pi nk/N}$

 $|X[k]|, \varphi$

IFFT

Non-Negative Matrix Factorization (NMF)

<https://www.nature.com/articles/44565> <https://proceedings.neurips.cc/paper/2000/file/f9d1152547c0bde01830b7e8bd60024c-Paper.pdf>

Objective Function

$V \approx WH$

 m ... number of i events $*$ positions (560 x 154) n ... number of frequencies (0-360Hz) r ... number of components (1-5) $V \in \mathbb{R}^{n \times m}_+$... reconstructed event at position $W \in \mathbb{R}_+^{n \times r}$... components $H \in \mathbb{R}_+^{r \times m}$... presence of components

NMF Objective Function: $\min_{W,H} f(W,H) \equiv \frac{1}{2}$ $\frac{1}{2}||V-WH||_F^2$, s.t. $W, H \ge 0$

Backwards Path

Signal: B21R3 on 2021-04-18 08:44:17

Causal Discovery

El. Vs Phys. Position

U-diode frequencies

3Hz Examples

Quenched Magnet: C32L2 (Manufacturer 1) RB_RB.A12_1619462088820000000_2021-04-26

U_Diode @ 1st EE plateau

Quenched Magnet: C14L2 (Manufacturer 1) RB_RB.A12_1619935955860000000_2021-05-02

Quenched Magnet: B33R4 (Manufacturer 1) RB_RB.A45_1620232873800000000_2021-05-05

 0.35

 0.40

 0.45

 0.50

Time / s

 0.55

 0.60

0.65

 -4.6

 -4.8

 -5.0

 -5.2

 -5.4

age / V

It actually starts 1 QPS crate after the EE switches

Outlier Detection

Assumptions

Assumptions for this plot:

- Linear detrend
- Hamming window
- 4 components
- Frobenius distance

1. Preprocessing:

- 1. Degree of detrend:
	- 1. 0 Offset
	- 2. 1 Linear Trend
- 2. Window multiplication:
	- 1. none (best reconstruction, high smearing)
	- 2. hanning (lowest smearing, no reconstruction)
	- 3. hamming (low smearing , good reconstruction)
	- 4. barlett
	- 5. blackman
	- 6. flattop (high smearing, accurate amplitude)
	- 7. tukey

2. NMF:

- 1. n components (2-12)
- 2. Distance measure*:
	- 1. Frobenius (Eu)

ntelligent systems

2. Kullback-Leibler (KL)

* https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6410389

2038 - RB.A78 - B28L8 - Intercoil short

Event with B28L8 quench before:

2021-03-28: "normal" at EE plateaus \bullet

FPA identifier: RB RB.A78 1619330143440000000 Date: 2021-04-25 07:55:43.418000 Max. Current: 11588.0 A

El. Position Primary Primary quench position: 126 Fast secondary quench: []

El. Position

1225 - RB.A45 - C17L5

Events with C17L5 quench before:

- 2021-05-07: "normal" at EE plateaus
- 2021-05-07: "normal" at EE plateaus

FPA identifier: RB RB.A45 1620797547820000000 Date: 2021-05-12 07:32:27.799000 Max. Current: 11701.0 A

 40

60

 20

El. Position Primary Primary quench position: 90 Fast secondary quench: []

U_Diode Signals

80

El. Position

100

 120

140

1146 - RB.A34 - A32L4

Events with A32L4 quench before:

- 2021-04-04: "normal" at EE plateaus
- 2021-04-14: 3 fast sec. quenches

FPA identifier: RB RB.A34 1620323722320000000 Date: 2021-05-06 19:55:22.295000 Max. Current: 11950.0 A

40

 20

El. Position Primary Primary quench position: 120 Fast secondary quench: []

U_Diode Signals

80

El. Position

100

120

60

 140

1291 - RB.A12 - B11L2

No B11L2 quench before

FPA identifier: RB_RB.A12_1621014819920000000 Date: 2021-05-14 19:53:39.901000 Max. Current: 11751.0 A

El. Position Primary Primary quench position: 151 Fast secondary quench: []

2421 - RB.A34 – B28R3

No B28R3 quench before

Most likely scenario of noise from simulations:

- Partially emerging resistor, in parallel to diode
- Degraded diode contact?

Date: 2021-04-20 07:28:30.924000 Max. Current: 11786.3 A U Diode Signals

FPA identifier: RB RB.A34 1618896510960000000

El. Position Primary Primary quench position: 106 Fast secondary quench: ['49@198ms']

