

ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA

Dual Readout with capillary tubes

Test Beam Results

I. Vivarelli (on behalf of the Dual Readout collaboration) - 9/10/2023

Support notes

Five notes submitted for the mid-term review for the dual-readout IDEA calorimeter

- <u>Dual-Readout Calorimetry for Future Experiments Probing Fundamental Physics</u>
- Exposing a fibre-based dual-readout calorimeter to a positron beam
- <u>Particle flow with a hybrid segmented crystal and fiber dual-readout calorimeter</u>
- <u>New perspectives on segmented crystal calorimeters for future colliders</u>
- <u>Preliminary cost estimate of the IDEA dual-readout calorimeter system</u>
- Focus on mechanical/readout option for dual-readout construction:
 - Detector unit: capillary tube with 2 mm external diameter hosting an optical fibre, read by a single SiPM \bullet
 - Flexible/scalable option: modules are obtained by gluing tubes together
- EM-containment-size prototype built in 2021 as a stepping stone for HiDRa (HAD-containmentsize prototype)
- **Tested on beam in 2021** and again in 2023. Aim: •
 - Assess response to EM showers, compare to simulation, exercise evolving DAQ and software tools
- Results published as N. Ampilogov et al 2023 JINST 18 P09021

What was tested

- Dual readout (Cherenkov and scintillation signal) 10 x 10 x 100 cm³.
- 9 towers, each with 160 x 2 tubes/fibres
 - M1-8 fibres bundled and read by **2x8 PMTs** (2 readings per tower)
 - M0 fibres fan out and read by **2x160 SiPMs** (S14160-1315, 15 μ m pitch)
 - **5 CAEN FERS-5200 boards** (64 channels each) provide bias voltage \bullet and sampling for SiPMs

How it was tested

- SPS H8 beam line
 - ... with a series of auxiliary detectors
 - **DWCs** provide O(1 mm) resolution on particle position
 - Cherenkov counters filled with He, used to separate e from hadrons good separation up to ~ 30 GeV \bullet
 - Physics trigger provided by **3 thin scintillators (T₁₋₃)**
 - **Preshower:** 1 X_0 of lead glued to a plastic scintillator useful to identify electrons at high energy lacksquare

Calibration (1)

- FERS provide **double gain readout** for each SiPM
 - Gain ratio of about 10 ullet
- High Gain equalised by making use of **multiphoton spectrum**
- Low Gain scale set exploiting correlation with High Gain

Calibration (2)

- SiPM gain made uniform by making use of multiphoton spectrum
- M1-8 response equalised to that of tower MO when aiming at the centre of each tower with a positron beam (20 GeV)
- Module calibration determined by setting the **response of the** whole prototype to 20 GeV

Events

Event

Electron selection

- DWCs used to select particles hitting a specific detector region
- Low energy ($E_{\text{beam}} \leq 30 \text{ GeV}$): use Cherenkov counters and reject particles in pedestals
- High energy ($E_{\text{beam}} \ge 40 \text{ GeV}$): use PS and reject single MIP peak

Issues with data taking

- Data taking was affected by:
 - Very poor electron (actually positron) component in the beam
 - < 5% at 50 GeV, ~ 1% above 80-100 GeV

Issues with data taking

- Data taking was affected by:
 - Very poor electron (actually positron) component in the beam
 - < 5% at 50 GeV, ~ 1% above 80-100 GeV
 - **calorimeter** \rightarrow induced lateral leakage

• Placement of Preshower forced by access & equipment available, but too far from

Preshower placement

- Distance between PS and calorimeter was about 2 m
- Lateral leakage induced can be corrected on **average** \rightarrow linearity of the energy response unaffected
- Significant worsening of resolution observed
- Solution: measure resolution at low energy by requiring signal compatible with MIP at low energy ($E_{\text{beam}} \leq 30 \text{ GeV}$). Extrapolate at higher energies using simulation

15 10

Issues with data taking

- Data taking was affected by:
 - Very poor electron (actually positron) component in the beam lacksquare
 - < 5% at 50 GeV, < 1% above 80-100 GeV
 - Placement of Preshower forced by access & equipment available, but too far from **calorimeter** \rightarrow induced lateral leakage
 - Slight tilt between fibers and beam needed (in Test Beam configuration). Correctly introduced in x, but not introduced in y

- asymmetric response
 - along y)

Electron response

- Raw electron energy measurement shows asymmetric response
 - The reason: **position dependence of the response** (absent when moving along x, well visible when moving along y)
- Simulation study: a 2.5° tilt in y-z plane would have avoided the issue completely.
 - Not an issue for IDEA (material in front of calorimeter + magnetic field)
- ... but we **definitely need a strategy** to correct before assessing calorimeter performance

Correcting the position dependence

- Exploit the ~2 mm lateral shower granularity to correct for the position dependence
- R_{max} Define

- Correlation with energy deposit through impact point position
- Correct the response depending on R_{max}

energy in most energetic scint row total energy in scint

Electron energy resolution

- Resolution to data at 10, 20 and 30 GeV compatible to that obtained with the simulation in same conditions (no tilt in the y-z plane)
- Simulation used to assess electron performance in "ideal" conditions $(2.5^{\circ} \text{ tilt in y-z})$
- Resolution found comparable to that of previously explored mechanical options

Lateral shower shape

• Single-fibre readout allowed high-precision measurement of the electron shower shape

Cherenkov view of the shower somewhat wider. Very good agreement with G4 simulation

FCC - Detector Concepts Meeting - 9/10/2023

Other activities

- 2022 and 2023
- **New test beam** of the same capillary tube prototype took place in 2023. Analysis ongoing:
 - Much better **electron purity** in the SPS beam lacksquare
 - z planes
 - Plus muon and hadron runs, and runs with calorimeter at 90°
- Construction of had size prototype (HiDRa) ongoing

Other mechanical solutions and readouts tested by colleagues from Korea in

Preshower positioned at 15 cm from calorimeter, data taken with different tilts in x-z and y-

Summary

- Capillary tube mechanical option for Dual Readout calorimetry tested on beam in **2021** (and again in 2023)
- 2021 results recently published and summarised in this talk
- Despite harsh data taking conditions and a few oversights, we manage to show:
 - That the response to electrons is linear over a wide range of energies
 - That the resolution in data is compatible to that in simulation lacksquare
 - That the **extrapolated simulation resolution is satisfactory** for construction of bigger prototypes ullet
 - That the simulation is reliable even to reproduce shower shapes of the EM shower
- The capillary tube option for mechanical construction will be used for the \bullet construction of a prototype capable to contain hadronic showers

