

Jet substructure in VBS measurements by CMS and ATLAS experiments

Nur<u>fikri</u> Norjoharuddeen nurfikri.bin.norjoharuddeen@cern.ch

On behalf of CMS & ATLAS collaborations

COMETA 1st General Meeting

University of Izmir Bakırçay, İzmir, Türkiye 28 February 2024

- Why jet substructure for Vector Boson Scattering (VBS) measurements?
- Focus on the jet substructure techniques developed by CMS and ATLAS.
- Highlight CMS & ATLAS VBS Run 2 measurements using jet substructure techniques.
- Recent state-of-the-art techniques by CMS & ATLAS.

Why jet substructure for VBS analyses?

High-mass m_{vv} measurement

TeV-scale m_{VV}

"boosted" boson decays -> collimated decay products

Additional challenges in VBS analyses

Jet substructure techniques

Jet Algorithms at the LHC

Sequential clustering algorithms with distance parameter R

- 1) k_τ
- 2) Cambridge-Aachen (CA)
- 3) anti-k_T (AK)

"Standard" jet algorithms by experiments

- Small-R jets: anti- $k_T R = 0.4 [AK4]$
- Large-R jets: anti- $k_T R = 0.8$ [AK8] for CMS, 1.0 [AK10] for ATLAS

$$d_{ij} = \min(p_{ti}^{2p}, p_{tj}^{2p}) \frac{\Delta R_{ij}^2}{R^2}$$
$$d_{iB} = p_{ti}^{2p},$$

"Non-standard" jets used also

e.g Variable-R jets

JINST 15 (2020) P06005 ATL-PHYS-PUB-2017-010 EPJ C 67, 637-686 (2010)

(Large-R) Jet Grooming

JHEP 1002 (2010) 084 Eur. Phys. J. C 76 (2016) 154

- 1. Recluster with k_t algorithm with R = 0.2.
- 2. Remove subjets with p_T fraction < 5%.

Figures by J. Dolen

HEP 1405 (2014) 146 JINST 15 (2020) P06005

CMS Soft Drop Stop when both subjets satisfy soft Decluster drop iteratively criterion

- 1. Recluster with CA algorithm.
- 2. Reverse clustering history.
- 3. Check criterion:

$$\frac{\min(p_{\text{T1}}, p_{\text{T2}})}{p_{\text{T1}} + p_{\text{T2}}} > z_{\text{cut}} \left(\frac{\Delta R_{12}}{R_0}\right)^{\beta} \qquad \qquad z_{\text{cut}} = 0.1$$

$$\beta = 0$$

4. Pass: two subjets are final. Fail: remove sub-leading subjet & repeat (1).

(Large-R) Jet Grooming

Jet grooming (+ Pileup Mitigation) "cleans" up large-R jets

Jet Tagging With Substructure Moments

Measures of energy distributions inside a jet

Energy Correlation Functions (ECFs)

- Axes-free approach
 - ➤ reduces dependence of the jet pt

$$E_{CF2}(\beta) = \sum_{i < j \in J} p_{T_i} p_{T_j} (\Delta R_{ij})^{\beta} \qquad e_2^{(\beta)} = \frac{E_{CF2}(\beta)}{E_{CF1}(\beta)^2}$$
$$E_{CF3}(\beta) = \sum_{i < j < k \in J} p_{T_i} p_{T_j} p_{T_k} (\Delta R_{ij} \Delta R_{ik} \Delta R_{jk})^{\beta} \qquad e_3^{(\beta)} = \frac{E_{CF3}(\beta)}{E_{CF1}(\beta)^3}$$

N-subjettiness

• Subjet axes approach (exclustive k_T algorithm)

$$\tau_{\rm N} = \frac{1}{d_0} \sum_k p_{\rm T}^k \min(\Delta R_{1,k}, \dots, \Delta R_{{\rm N},k}) \qquad d_0 = \sum_k p_{\rm T}^k R_0$$

Eur. Phys. J. C 79 (2019) 375

 D_{2}

Pileup Mitigation (CMS)

Pileup Mitigation (ATLAS)

Jet Vertex Tagger (JVT)

Likelihood discriminant built from:

- corrected Jet Vertex Fraction (corrJVF)
- R_{pT}: ratio of track p_T sum to jet p_T

ATLAS Simulation

Forward Jet Vertex Tagger (fJVT)

Use MET calculated at each PU vertex to check for forward jets that correct imbalance

Eur. Phys. J. C 77 (2017) 580

Quark-Gluon Likelihood (QGL)

CMS-PAS-JME-16-003

Quark-Gluon Jet Tagging (ATLAS)

Run 2 VBS measurements with jet substructure

18

- Full Run-2 dataset (L = 138 fb⁻¹) collected with singlelepton triggers.
- W->Iv: Single e/μ + MET.
- **Boosted selection**
- V-jet candidate: 1 AK8 <u>Puppi</u> jet, τ₂₁, 40 < m_{SD} < 250 GeV.</p>
- VBS tag jets: 2 AK4 CHS jets with highest invariant mass.

Resolved selection

- VBS tag jets: 2 AK4 jets with highest invariant mass
- V-jet candidate: 2 AK4 jets with invariant mass closest to 85 GeV.
- Pileup Jet ID applied for AK4 CHS jets.

CLIAD manifima

19

Signal extraction strategy

Train a DNN from event-level and jet-level observables and fit the DNN distribution.

Varial	Variable	Resolved	Boosted	SHAP ranking	
	vallable			Resolved	Boostec
	Lepton pseudorapidity	\checkmark	\checkmark	13	12
	Lepton transverse momentum	\checkmark	\checkmark	16	10
	Zeppenfeld variable for the lepton	\checkmark	\checkmark	2	2
	Number of jets with $p_{\rm T} > 30 {\rm GeV}$	\checkmark	\checkmark	7	3
	Leading VBS tag jet $p_{\rm T}$	-	\checkmark	-	11
	Trailing VBS tag jet $p_{\rm T}$	\checkmark	\checkmark	7	6
	Pseudorapidity interval $\Delta \eta_{ij}^{VBS}$ between tag jets	\checkmark	\checkmark	4	4
	Quark/gluon discriminator of leading VBS tag jet	\checkmark	\checkmark	9	7
	Azimuthal angle distance between VBS tag jets	\checkmark	-	10	-
	Invariant mass of the VBS tag jets pair	\checkmark	\checkmark	1	1
	$p_{\rm T}$ of the leading V _{had} jet	\checkmark	-	14	-
	$p_{\rm T}$ of the trailing V _{had} jet	\checkmark	-	12	-
	Pseudorapidity difference between V _{had} jets	\checkmark	-	8	-
	Quark/gluon discriminator of the leading V _{had} jet	\checkmark	-	3	-)
	Quark/gluon discriminator of the trailing V _{had} jet	\checkmark	-	5	
	$p_{\rm T}$ of the AK8 V _{had} jet candidate	-	\checkmark	-	8
	Invariant mass of V _{had}	\checkmark	\checkmark	11	5
	Zeppenfeld variable for V _{had}	-	\checkmark	-	9
	Centrality	-	\checkmark	15	13

20

DNN output distribution in signal regions

 4.4σ (5.1 σ) observed (expected) significance of VBS EWK WV signal

ATLAS: VBS VV -> vvqq / lvqq / llqq

• 2016 dataset with single-lepton / MET triggers.

Three lepton channels simultaneously:

- > Leptonic W: Single e / μ .
- > Leptonic Z: ee / $\mu\mu$
- ≻Z->vv: MET

q q''' W/Z Hadronic W/Z Leptonic q''

Boosted selection

- > V-jet candidate: 1 AK10 jet, D₂, p_T-dependent m_{comb} cut.
- > VBS-tag jets: 2 AK4 jets with highest invariant mass.
- > Split to High-Purity and Low-Purity signal regions based on (D₂, m_{comb}) cut.

Resolved selection

- ➤ V-jet candidate: 2 AK4 jets with invariant mass closest to W/Z mass GeV.
- > VBS-tag jets: 2 AK4 jets with highest invariant mass

Phys. Rev. D 100, 032007 (2019)

ATLAS: VBS VV -> vvqq / lvqq / llqq

Signal extraction strategy

Train a BDT from event-level and jet-level observables and fit the BDT distribution.

Variable	0-lepton	1-lepton	2-lepton
m_{ii}^{tag}	1		1
$\Delta \eta_{ii}^{\text{tag}}$			\checkmark
$p_{\mathrm{T}}^{\mathrm{tag},j_2}$	1	1	\checkmark
m_J	\checkmark)
$D_2^{(eta=1)}$	1		✓)
E _T ^{miss}	\checkmark		
$\Delta \phi(ec{E}_{\mathrm{T}}^{\mathrm{miss}},J)$	1		
η_{ℓ}		1	
$n_{j,\mathrm{track}}$	1		
ζ_V		\checkmark	\checkmark
m_{VV}			1
p_{T}^{VV}			1
m_{VVjj}		1	
p_{T}^{VVjj}			\checkmark
W^{tag,j_1}	\checkmark)
W^{tag, j_2}	\checkmark		

Variable	0-lepton	1-lepton	2-lepton
m_{ii}^{tag}	1		1
$\Delta \eta_{ii}^{\text{tag}}$			1
$p_{\mathrm{T}}^{\mathrm{tag}, j_1}$	1	1	
$p_{\mathrm{T}}^{\mathrm{tag}, j_2}$	1	1	\checkmark
$\Delta \eta_{ii}$	1	1	\checkmark
$p_{\mathrm{T}}^{j_1}$	1		
$p_{\rm T}^{j_2}$	1	1	1
w^{j_1}	1	1	\sim
w^{j_2}	1	1	1
$n_{ m tracks}^{j_1}$		\checkmark	1
$n_{ m tracks}^{j_2}$		1	1
w^{tag, j_1}	1	1	1
w^{tag, j_2}	1	\checkmark	1
$n_{ m tracks}^{ m tag, j_1}$		1	1
$p_{\mathrm{tracks}}^{\mathrm{tag},j_2}$		\checkmark	\)
n _{j,track}	1		\checkmark
<i>n</i> _{j,extr}	\checkmark		
$E_{\mathrm{T}}^{\mathrm{miss}}$	1		
η_{ℓ}			
$\Delta R(\ell, \nu)$		<i>,</i>	
5 <i>V</i>		v	٠ ١
m_{VV} m_{VVii}		✓	•

Phys. Rev. D 100, 032007 (2019)

ATLAS: VBS VV -> vvqq / lvqq / llqq

BDT output distribution in Boosted category signal regions

 2.7σ (2.5σ) observed (expected) significance of VBS EWK VV signal

The future of jet tagging & substructure

Constituent-based jet taggers

Jet mass regression with jet constituents

State-of-the-art (ATLAS)

- New jet input: Unified Flow Objects (UFO) Eur. Phys. J. C 81 (2021) 334
 - > Particle Flow (PF) + Track Calo-Clusters (TCC).
- New baseline large-R jet: CS+SK UFO Soft-Drop Anti- $k_T R = 1.0$ jets
 - Constituent-Subtraction + Soft-Killer for pileup mitigation.
- Constituent-based jet taggers:

- High-mass m_{VV} regime in VBS measurements is a crucial phase space to discover or constrain BSM physics.
- In this regime, jet substructure techniques enhances the ability to identify boosted hadronically decaying V-bosons.
 - Together with quark vs gluon and pileup jet discrimination for VBS event tagging.
- CMS & ATLAS have utilized jet substructure in Run 2 VBS measurements.
- Latest state-of-the-art substructure techniques to be used for Run 2/3 CMS and ATLAS analyses.

EXTRA SLIDES

Jet Reconstruction: Input for <u>CMS</u>

Particle Flow (PF) Algorithm

JINST 12 (2017) P10003

Jet Reconstruction: Input for <u>ATLAS</u>

Evolution throughout Run-2

Pileup Jet Id (ATLAS): Inputs for JVT

JINST 15 (2020) P09018

BDT Input Variables

Definition Input variable Fraction of $p_{\rm T}$ of charged particles associated with the β LV, defined as $\sum_{i \in \text{LV}} p_{\text{T},i} / \sum_i p_{\text{T},i}$ where *i* iterates over all charged PF particles in the jet Number of vertices in the event N_{vertices} $\langle \Delta R^2 \rangle$ Square distance from the jet axis scaled by p_T^2 average of jet constituents: $\sum_i \Delta R^2 p_{T_i}^2 / \sum_i p_{T_i}^2$ Fraction of $p_{\rm T}$ of the constituents $(\sum p_{\rm T,i}/p_{\rm T}^{\rm jet})$ in the region $f_{\rm ringX}, X =$ $R_i < \Delta R < R_{i+1}$ around the jet axis, where $R_i = 0, 0.1, 0.2$, 1, 2, 3, and 4 and 0.3 for X = 1, 2, 3, and 4 $p_{\rm T}^{\rm lead} / p_{\rm T}^{\rm jet}$ $p_{\rm T}$ fraction carried by the leading PF candidate $p_{\rm T}^{\rm l.\,ch.}/p_{\rm T}^{\rm jet}$ $p_{\rm T}$ fraction carried by the leading charged PF candidate Pull magnitude, defined as $|(\sum_i p_T^i | r_i | \vec{r}_i)| / p_T^{\text{jet}}$ where \vec{r}_i is $|\vec{m}|$ the direction of the particle *i* from the direction of the jet Number of PF candidates N_{total} Number of charged PF candidates N_{charged} Major axis of the jet ellipsoid in the η - ϕ space σ_1 Minor axis of the jet ellipsoid in the η - ϕ space σ_2 $p_{\rm T}^{\rm D}$ Jet fragmentation distribution, defined as $\sqrt{\sum_i p_{T,i}^2} / \sum_i p_{T,i}$

CHS(+Pileup ID) vs Puppi Performance in simulation

