STATE OF THE ART SEARCHES FOR HIGGS EXOTIC DECAYS IN ATLAS AND CMS

Toni Šćulac

- on behalf of ATLAS and CMS Collaborations
- 1st COMETA General Meeting, Izmir, Turkey 28.02.2024.

MOTIVATION

Istory taught us that if we try hard enough, we will eventually find parameter-space where our current understanding of physics completely breaks down

MOTIVATION

- particle and the best candidate for BSM physics

• We know that Standard Model has to break down, we just don't know where the parameter-space is! • Higgs boson is the latest elementary particle we discovered and that makes it the least studied

PART 1 RARE SM DECAYS

- Rare Higgs decays are a big challenge
 because of the interplay of extremely low branching ratios and overwhelming SM background
- Is the origin of mass of fermions really explained with the introduction of ad-hoc Yukawa terms?
- In the first part we focus on the ~4% if the Higgs boson decay pie, showing results utilising Run 2 data of ~140 fb⁻¹ protonproton collisions at 13 TeV

RARE HIGGS DECAYS

CHANNELS OVERVIEW

	Channel	Dataset	Publication
ATLAS	H→Zγ	139 fb ⁻¹ (Run2)	<u>Phys. Lett. B 809 (2020) 135754</u>
CMS	H→Zγ	138 fb ⁻¹ (Run2)	<u>JHEP05(2023)233</u>
ATLAS + CMS	H→Zγ	139 fb ⁻¹ (Run2)	<u>Phys. Rec. Lett. 132, 021803</u>
ATLAS	H→µµ	139 fb ⁻¹ (Run2)	<u>Phys. Lett. B 812 (2021) 135980</u>
CMS	H→µµ	137 fb ⁻¹ (Run2)	<u>JHEP01(2021)148</u>
ATLAS	H→cc	139 fb ⁻¹ (Run2)	<u>EPJC82(2022)717</u>
CMS	H→cc	138 fb ⁻¹ (Run2)	<u>Phys. Rev. Lett. 131 (2023) 061801</u>
ATLAS	H→ee	139 fb ⁻¹ (Run2)	<u>Phys. Lett. B 801 (2020) 135148</u>
CMS	H→ee	138 fb ⁻¹ (Run2)	<u>Phys. Lett. B 846 (2023) 137783</u>

- Branching ratio is 0.15%
- Analysis target $ee/\mu\mu + \gamma$ final states
 - OS SF leptons with tight mass window requirement
 - Improvements to mass resolution through FSR corrections and kinematic fits
- Several categories designed to target different production modes and mass' resolution • machine learning classifiers used for better S/B separation
- extract signal strengths

• Simultaneous S+B fit across all categories is performed on the Z γ invariant mass distribution to

$H \rightarrow Z\gamma$ EVIDENCE

ATLAS and CMS both observe excess compatible with SM prediction
ATLAS observed (expected) significance: 2.2σ (1.2 σ)
CMS observed (expected) significance: 2.7σ (1.2 σ)
A combination of two measurements was performed for first evidence of H→Zγ decay:
ATLAS + CMS observed (expected) significance: 3.4σ (1.6 σ)
μ = 2.2 ± 0.6 (stat.)^{+0.3}_{-0.2} (syst.)

0.97

20

 $\mu\mu$ high- p_{τ_t} $\mu\mu$ low- $p_{_{T}}$

В

∑` {

• A dedicated analysis targeting Z/γ^* and leptons with a photon from FSR \odot m_{II} < 30 GeV ensures orthogonality with previous • Because of event kinematics it is communication of event kinematics it is communication. two electrons to be reconstructed as a single cluster: • custom calibration and classification designed • ATLAS observed (expected) significance: $3.2\sigma'(2.1 \sigma)$ $\mu = 1.5 \pm 0.5$ GeV ATLAS Simulation $\langle E_{Reco} / E_{True}$ weights/ √s = 13 TeV 20 \mathbf{N} 15 0.99 10 $H \rightarrow \gamma^* \gamma \rightarrow ll \gamma, |\eta(l)| < 2.47$ 0.98 Calibration hypothesis: + converted γ (r = 30 mm)

+ converted γ (r = 100 mm)

+ converted γ (r = 400 mm)

100

True $p_{\tau}^{\gamma^*}$ [GeV]

120

80

+ electron

60

40

- Branching ratio is 0.02% + very high background rates
- Sensitivity highly correlated with $m_{\mu\mu}$ resolution

 $H \rightarrow \mu \mu$

1	Π
	U

- Branching ratio is 3% + extremely high QCD background
- Associated production studied VH(cc)
- c-taggers critical for success
 - hadrons containing c-quarks have measurable lifetime (120 300 μ m)
- Graphical neural networks used for c-tagging designed to separate signal vs:
 - Iight jets
 - H→bb
- c-tagging is still a challenge with ~20-50% efficiency with considerable background leakage of ~10% • still significant improvements wrt to precious state-of-the-art taggers
- Significant systematic uncertainties

$H \rightarrow CC$

• CMS observed (expected) upper limit @95% CL: $\mu < 14.4 * SM (7.6 exp.)$

topologies (CMS)

-background discrimination and category definition

1S) or invariant mass m_{cc} (ATLAS)

(CMS + ATLAS) and boosted topologies (CMS) 95% CL limit on $\mu_{VH(c\overline{c})}$, xpected) upper limit @95% CL: $\mu < 26 * SM (31 exp.)$

 \odot CMS observed (expected) upper limit @95% CL: $\mu < 14.4 * SM (7.6 exp.)$ • Combination with VH(bb) used to set limits on κ_c/κ_b ratio < 4.5 (smaller than ratio of masses)

- nine-learning classifiers for better signal-background discrimination and category definition
- c-tagging discriminant (CMS) or invariant mass m_{cc} (ATLAS)

 \odot Extremely small branching ratio of $5 \cdot 10^{-9}$ • ATLAS upper limit @95% CL: BR < $3.6 \cdot 10^{-4}$ • CMS upper limit @95% CL: BR < $3.0 \cdot 10^{-4}$

 $H \rightarrow ee$

700

600

<u>CMS-PAS-SMP-22-012</u>

Phys. Lett. B 847 (2023) 138292

Phys. Lett. B 842 (2022) 137534

PART 2 EXOTIC BSM DECAYS

- BSM models predict exotic decays of the
 SM Higgs boson
- 4 MeV total width of the SM Higgs boson means a small BSM coupling can produce a large BSM branching fraction
- In the part 2 we focus on:
 - decays to (pseudo)scalars
 - invisible decays
 - Lepton Flavour Violation (LFV) decays
- Impossible to go through everything, only showing some selected analysis

RARE HIGGS DECAYS

CHANNELS OVERVIEW

	Channel	Dataset	Publication
CMS	H→aa→4b	138 fb ⁻¹ (Run2)	<u>CMS-PAS-HIG-18-026</u>
CMS	$H \rightarrow AA \rightarrow 4\gamma$	136 fb ⁻¹ (Run2)	<u>Phys. Rev. Lett. 131 (2023) 101801</u> JHFP 07 (2023) 148
ATLAS	$H \rightarrow AA \rightarrow 4\gamma$	140 fb ⁻¹ (Run2)	ATLAS-CONF-2023-040
CMS	H→aa→µµbb/ττbb	138 fb ⁻¹ (Run2)	Submitted to EPJC
ATLAS	H→aa→µµbb	139 fb ⁻¹ (Run2)	<u>Phys. Rev. D 105 (2022) 012006</u>
CMS	H→Za→llγγ	138 fb ⁻¹ (Run2)	<u>Submitted to Phys. Lett. B</u>
ATLAS	H→Za→IIγγ	139 fb ⁻¹ (Run2)	<u>Submitted to Phys. Lett. B</u>
ATLAS	$H \rightarrow Z_D Z_D \rightarrow 4I$	139 fb ⁻¹ (Run2)	<u>JHEP 03 (2022) 041</u>
CMS	$H \rightarrow Z_D Z_D \rightarrow 4I$	137 fb ⁻¹ (Run2)	<u>Eur. Phys. J. C 82 (2022) 290</u>
ATLAS	Η→γγ⊳	139 fb ⁻¹ (Run2)	<u>JHEP 07 (2023) 133</u>
CMS	H→eτ/μτ	137 fb ⁻¹ (Run2)	<u>Phys. Rev. D 104 (2021) 032013</u>
ATLAS	H→eτ/μτ	138 fb ⁻¹ (Run2)	<u>JHEP 07 (2023) 166</u>

- Several BSM models pr scalar bosons (a/A)
- (Pseudo)scalar a/A generally decays to fermions
 - can also decay to bosons in some models
- Variety of decay modes studied:
 - $H \rightarrow aa \rightarrow 4b$: interpretation in 2HDM+S models

138 fb⁻¹ (13 TeV)

a

a

H

- Several BSM models predict Higgs decays to a pair of on-shell scalar bosons (a/A)
- (Pseudo)scalar a/A generally decays to fermions
 [Box 1]
 [Box 2]
 [Box 2]
 [Box 3]
 [Box 3
 - can also decay to bosons in some models
- Variety of decay modes studied:
 - \odot H \rightarrow aa \rightarrow 4b: interpretation in 2HDM+S models
 - $H \rightarrow AA \rightarrow 4\gamma$: low-mass (0.1 1.2 GeV) ALP model search + high mass (15-62 GeV) 2HDM + S

$H \rightarrow (PSEUDO)SCALARS$

- Several BSM models predict Higgs decays to a pair of on-shell (pseudo) scalar bosons (a/A)
- (Pseudo)scalar a/A generally decays to fermions
 [Box 1]
 [Box 2]
 [Box 2]
 [Box 3]
 [Box 3
 - can also decay to bosons in some models
- Variety of decay modes studied:
 - \odot H \rightarrow aa \rightarrow 4b: interpretation in 2HDM+S models
 - $H \rightarrow AA \rightarrow 4\gamma$: low-mass (0.1 1.2 GeV) ALP model search + high mass (15-62 GeV) 2HDM + S
 - $H \rightarrow aa \rightarrow \mu\mu bb/\tau\tau bb$: interpretation in 2HDM+S models

- scalar bosons (a/A)
- Variety of decay modes studied:
 - \odot H \rightarrow aa \rightarrow 4b: interpretation in 2HDM+S models

 - \odot H \rightarrow aa \rightarrow µµbb/ $\tau\tau$ bb: interpretation in 2HDM+S models

• $H \rightarrow Za \rightarrow II\gamma\gamma$: first search using this signatur

$H \rightarrow Z_D Z_D / Z Z_D$

- boson Z_D and mixing with SM H and Z

Some BSM theories allow LFV processes

- $H \rightarrow e\mu$, $H \rightarrow e\tau$, $H \rightarrow \mu\tau$ become possible
- Constrains on LFV Yukawa couplings

LFV DECAYS

- Rare decays highly limited by statistical uncertainties
- Significant improvements with more data (HL-LHC)
- $H \rightarrow cc$ will remain challenging because of c-tagging
- Many exotic Higgs decays studied, no new particles discovered (yet)
- This presentation shows that rare and exotic Higgs decays are an active field of study with many new channels probed in Run 2
- We are continuously improving experimental limits and collecting more data, so expect much more in HL-LHC!

OUTLOOK

łC		
syst		

25

