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Motivation — why do we need b-tagging?
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Resonant production of a heavy scalar X decaying
asymmetrically to a new scalar S and H.

We need access to three scalars, able to decay to 
each other – may be CP-even, odd, indefined

Would arise in various flavors of 2HDM, NMSSM, 
TRSM.. may often be preferred over resonant HH

Today:

Re-intro to Run 2

Are there specific things we could consider
conserning

- How to present/analyze results?

- What models/benchmarks to consider?

- Other relevant questions that need asking?

What and Why?

H

 

S

 

X

 

… or directly search for 
resonances that could 
modify this potential



History of b-tagging
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Quote in L. Gouskas’s HH ws talk 
News articles c.f. L. Heinrich

article article

Today H(bb) key for 
HH and Higgs-like 

resonance searches!

[T]he H → bb decay mode is dominant … [but] the extraction of a signal from H → bb 
decays in the WH channel will be very difficult at the LHC, even under the most 
optimistic assumptions for the b-tagging performance and calibration of the shape and 
magnitude of the various background sources from the data itself. 

Higgs discovery

ATLAS 
TDR 
1999

 [GeV]m4ℓ

THIS 
TALK

“Alex Net”
Krizhevsky, Sutskever, Hinton, 2012

https://indico.cern.ch/event/1001391/contributions/4826839/attachments/2453993/4205976/lg-jets-higgspairs2022-v1.pdf
https://www.nytimes.com/2012/07/05/science/cern-physicists-may-have-discovered-higgs-boson-particle.html
https://www.nytimes.com/2012/11/24/science/scientists-see-advances-in-deep-learning-a-part-of-artificial-intelligence.html
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2012-28/
https://cds.cern.ch/record/391177/
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MV2c10 DeepCSV

RNNIP /  
DL1r DeepJet
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Triumph for the Run 
2 HH analyses

In boosted CMS 
HH analyses
Run 3 triggers



What does a “b”-jet look like?
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b-jet properties:

Running the algorithm in the standard configuration results in the recon-
struction of 9 secondary vertices with positive decay length significance. This
is in good agreement with the 8.9± 0.5(stat.) vertices expected from the same
number of jets, 10 503, in non-diffractive minimum-bias simulation. The vertices
reconstructed with the standard version of the tagging algorithm are predom-
inantly those with higher masses as the low-mass region is dominated by K0

S
mesons.

Figure 14: An event containing a secondary vertex selected by the secondary
vertex algorithm. The pixel detector can be seen on the left and an expansion
of the vertex region on the right. Unassociated hits, in a lighter colour, are
predominantly due to unreconstructed particles such as those with transverse
momenta below 0.5 GeV.

An event display of the highest-mass candidate is shown in Fig. 14. The
secondary vertex consists of five tracks and has a mass of 2.5 GeV. The vertex
is significantly displaced from the primary vertex, with a signed decay length
significance L/σ(L) = 22. From the vertex mass, momentum and L a proper
lifetime of 3.1 ps is estimated. The data was also tested by the impact-parameter
based b-tagging algorithm and this jet is assigned a probability below 10−4 for
originating from a light quark jet.

5.5 Particle Identification using Transition Radiation

The TRT provides substantial discrimination between electrons and pions over
the wide energy range between 1 and 200 GeV by utilizing transition radiation
in foils and fibres. The readout discriminates at two thresholds, the lower set
to register minimum-ionising particles and the higher intended for transition
radiation (TR) photon interactions. The fraction of high-threshold TR hits as a

15

1005.5254

• “Long” lifetime 𝜏 = 1.2 ps 
• Massive B-hadron (≈ 5 GeV) 
• ≈ 5 displaced tracks 
• Harder fragmentation

Shall I 
contrast with 
the situation 
for light and 
charm jets??

Running the algorithm in the standard configuration results in the recon-
struction of 9 secondary vertices with positive decay length significance. This
is in good agreement with the 8.9± 0.5(stat.) vertices expected from the same
number of jets, 10 503, in non-diffractive minimum-bias simulation. The vertices
reconstructed with the standard version of the tagging algorithm are predom-
inantly those with higher masses as the low-mass region is dominated by K0

S
mesons.

Figure 14: An event containing a secondary vertex selected by the secondary
vertex algorithm. The pixel detector can be seen on the left and an expansion
of the vertex region on the right. Unassociated hits, in a lighter colour, are
predominantly due to unreconstructed particles such as those with transverse
momenta below 0.5 GeV.

An event display of the highest-mass candidate is shown in Fig. 14. The
secondary vertex consists of five tracks and has a mass of 2.5 GeV. The vertex
is significantly displaced from the primary vertex, with a signed decay length
significance L/σ(L) = 22. From the vertex mass, momentum and L a proper
lifetime of 3.1 ps is estimated. The data was also tested by the impact-parameter
based b-tagging algorithm and this jet is assigned a probability below 10−4 for
originating from a light quark jet.

5.5 Particle Identification using Transition Radiation

The TRT provides substantial discrimination between electrons and pions over
the wide energy range between 1 and 200 GeV by utilizing transition radiation
in foils and fibres. The readout discriminates at two thresholds, the lower set
to register minimum-ionising particles and the higher intended for transition
radiation (TR) photon interactions. The fraction of high-threshold TR hits as a
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Decay length = 3.7 mm 
Decay length significance = 22 
Lifetime = 3.1 ps 
Vertex mass = 2.5 GeV 
Number of tracks = 5

https://arxiv.org/pdf/1005.5254.pdf


Early Run 2 taggers
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Track Features Inclusive Vertex 
Fitter

DeepCSV

NN trained on 
high-level outputs

Track based Vertex based

Key idea: Hand engineered algorithms aggregated via a high-
level classifier

* slide with input details

IP2D

MV2

IP3D SV1 JetFitter

Track based Vertex based
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BDT trained on outputs 
of other classifiers

ATLAS CMS: Deep CSV

https://arxiv.org/abs/1712.07158
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How do we aggregate this information?
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What we have: 
• Collection of tracks 

•  

• Each track has features 

•  

• Jet has labels  

• : {b, c, light} — or — 
• : {bb, cc, top, QCD} 

Xi : i = {1,…, n}

Xi ∈ ℝm

Y
Y

High dimensional problem 
   n ⋅ m ∼ 𝒪(103)What we want: p(Y | X1, … , Xn)	

variable # of tracks
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E.g, impact parameters 
momenta, quality 
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Account for correlations between tracks 
Allow for variable # of tracks in the jet 
Avoids curse of dimensionality - 
add more features

Key development: Recurrent Neural Network 5m jets

20m jets



b-tagging
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X jets
Flavour-tagging efficiency corrections for the 2019 ATLAS 

PFlow jet b-taggers with the full LHC Run II dataset

http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/FTAG-2020-001/
http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/FTAG-2020-001/


b-tagging

9

baseline

RNNs
+Sets

Graphs

Trans-
formers

X jets
Flavour-tagging efficiency corrections for the 2019 ATLAS 

PFlow jet b-taggers with the full LHC Run II dataset

More 
signal!

New DL1r 
tagger 77% WPOld MV2 tagger 

70% WP

http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/FTAG-2020-001/
http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/FTAG-2020-001/
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DIPS
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Same inputs as b-tagging RNN

set

⏰ 4x speed up in 
training time c.f. 

RNNIP
DIPS → DL1d baseline 

for the Run 3 tagger 
optimizations
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DeepJet
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Figure 1. An illustration of the DeepJet architecture. Three seperate branches are used to process charged
candidates, neutral candidates and secondary vertices. The algorithm makes use of 1x1 convolutional layers
to perform automatic feature engineering for each class of jet constituents. The three RNN (LSTM) layers
combine the information for each sequence of constituents. Finally the full jet information is combined using
fully connected layers.
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Figure 2. Performance of the DeepJet and DeepCSV b-tagging algorithms on CC̄ events with both top quarks
decaying hadronically. The jets are required to have pT > 30 GeV (left) and pT > 90 GeV (right). The
performance is shown for both b vs. c classification (dashed lines), and b vs. light (solid lines).

4 Performance

4.1 Comparison with other b-tagging algorithms

The overall performance of DeepJet is compared to the CMS b-tagger DeepCSV, which is a
multi-classifier embedded in the CMS reconstruction framework, and which uses similar, but strongly
preselected, inputs along with additional high-level variables. The comparison is made on a fully
hadronic CC̄ sample, as shown in Fig. 2. DeepJet performs significantly better than DeepCSV with an
e�ciency2 increase of almost 20% at 10�3 misidentification probability3 for jets with pT > 90GeV.

The performance of the classifiers can also be compared on a set of multi-jet QCD events, which
allow accessing higher jet momenta. The inclusive results are shown in Fig. 3. A comparison for
di�erent jet pT can be found in Fig. 4 for fixed light jet misidentification probabilities. In both cases
DeepJet shows an increasing performance gain, in particular for higher jet pT, presumably exploiting
the information contained in all constituents.
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Figure 1. An illustration of the DeepJet architecture. Three seperate branches are used to process charged
candidates, neutral candidates and secondary vertices. The algorithm makes use of 1x1 convolutional layers
to perform automatic feature engineering for each class of jet constituents. The three RNN (LSTM) layers
combine the information for each sequence of constituents. Finally the full jet information is combined using
fully connected layers.
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Figure 2. Performance of the DeepJet and DeepCSV b-tagging algorithms on CC̄ events with both top quarks
decaying hadronically. The jets are required to have pT > 30 GeV (left) and pT > 90 GeV (right). The
performance is shown for both b vs. c classification (dashed lines), and b vs. light (solid lines).

4 Performance

4.1 Comparison with other b-tagging algorithms

The overall performance of DeepJet is compared to the CMS b-tagger DeepCSV, which is a
multi-classifier embedded in the CMS reconstruction framework, and which uses similar, but strongly
preselected, inputs along with additional high-level variables. The comparison is made on a fully
hadronic CC̄ sample, as shown in Fig. 2. DeepJet performs significantly better than DeepCSV with an
e�ciency2 increase of almost 20% at 10�3 misidentification probability3 for jets with pT > 90GeV.

The performance of the classifiers can also be compared on a set of multi-jet QCD events, which
allow accessing higher jet momenta. The inclusive results are shown in Fig. 3. A comparison for
di�erent jet pT can be found in Fig. 4 for fixed light jet misidentification probabilities. In both cases
DeepJet shows an increasing performance gain, in particular for higher jet pT, presumably exploiting
the information contained in all constituents.

2True Positive Rate.
3False Positive Rate.

– 5 –

100m jets
Φ:per-particle network

Better

Dramatically increased number of inputs 
→ Over 600 in total

A. Novak’s slide 

https://arxiv.org/abs/2008.10519
https://cds.cern.ch/record/2646773/files/DP2018_058.pdf
https://cds.cern.ch/record/2805611/files/DP2022_005.pdf
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Figure 1. An illustration of the DeepJet architecture. Three seperate branches are used to process charged
candidates, neutral candidates and secondary vertices. The algorithm makes use of 1x1 convolutional layers
to perform automatic feature engineering for each class of jet constituents. The three RNN (LSTM) layers
combine the information for each sequence of constituents. Finally the full jet information is combined using
fully connected layers.
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Figure 2. Performance of the DeepJet and DeepCSV b-tagging algorithms on CC̄ events with both top quarks
decaying hadronically. The jets are required to have pT > 30 GeV (left) and pT > 90 GeV (right). The
performance is shown for both b vs. c classification (dashed lines), and b vs. light (solid lines).

4 Performance

4.1 Comparison with other b-tagging algorithms

The overall performance of DeepJet is compared to the CMS b-tagger DeepCSV, which is a
multi-classifier embedded in the CMS reconstruction framework, and which uses similar, but strongly
preselected, inputs along with additional high-level variables. The comparison is made on a fully
hadronic CC̄ sample, as shown in Fig. 2. DeepJet performs significantly better than DeepCSV with an
e�ciency2 increase of almost 20% at 10�3 misidentification probability3 for jets with pT > 90GeV.

The performance of the classifiers can also be compared on a set of multi-jet QCD events, which
allow accessing higher jet momenta. The inclusive results are shown in Fig. 3. A comparison for
di�erent jet pT can be found in Fig. 4 for fixed light jet misidentification probabilities. In both cases
DeepJet shows an increasing performance gain, in particular for higher jet pT, presumably exploiting
the information contained in all constituents.
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Figure 1. An illustration of the DeepJet architecture. Three seperate branches are used to process charged
candidates, neutral candidates and secondary vertices. The algorithm makes use of 1x1 convolutional layers
to perform automatic feature engineering for each class of jet constituents. The three RNN (LSTM) layers
combine the information for each sequence of constituents. Finally the full jet information is combined using
fully connected layers.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
b-jet efficiency

3−10

2−10

1−10

1

m
is

-id
 ra

te

 events tt
 > 30 GeV) 

T
AK4jets (p

DeepJet

DeepCSV

b vs udsg
b vs c

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
b-jet efficiency

3−10

2−10

1−10

1

m
is

-id
 ra

te

 events tt
 > 90 GeV) 

T
AK4jets (p

DeepJet

DeepCSV

b vs udsg
b vs c

Figure 2. Performance of the DeepJet and DeepCSV b-tagging algorithms on CC̄ events with both top quarks
decaying hadronically. The jets are required to have pT > 30 GeV (left) and pT > 90 GeV (right). The
performance is shown for both b vs. c classification (dashed lines), and b vs. light (solid lines).

4 Performance

4.1 Comparison with other b-tagging algorithms

The overall performance of DeepJet is compared to the CMS b-tagger DeepCSV, which is a
multi-classifier embedded in the CMS reconstruction framework, and which uses similar, but strongly
preselected, inputs along with additional high-level variables. The comparison is made on a fully
hadronic CC̄ sample, as shown in Fig. 2. DeepJet performs significantly better than DeepCSV with an
e�ciency2 increase of almost 20% at 10�3 misidentification probability3 for jets with pT > 90GeV.

The performance of the classifiers can also be compared on a set of multi-jet QCD events, which
allow accessing higher jet momenta. The inclusive results are shown in Fig. 3. A comparison for
di�erent jet pT can be found in Fig. 4 for fixed light jet misidentification probabilities. In both cases
DeepJet shows an increasing performance gain, in particular for higher jet pT, presumably exploiting
the information contained in all constituents.
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100m jets
Φ:per-particle network

Better

Dramatically increased number of inputs 
→ Over 600 in total

A. Novak’s slide 

medium

medium working point (58% eff)
‣ 1.7x improvement in charm rejection 
‣ 5x improvement in light rejection

https://arxiv.org/abs/2008.10519
https://cds.cern.ch/record/2646773/files/DP2018_058.pdf
https://cds.cern.ch/record/2805611/files/DP2022_005.pdf
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How did these b-tagging improvements 
improve our HH analyses?
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* Note: Some places omitting sub-dominant channels to emphasize ones driving the sensitivity, full results in backup

ATLAS
CMS 4b bb𝛾𝛾 bb𝜏𝜏 Combination

σHH limit [x SM]

Early Run 2

Full Run 2 
(lumi scaling)

Full Run 2

Run 2+3 
(lumi scaling) dashed means by hand scaling
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* Note: Some places omitting sub-dominant channels to emphasize ones driving the sensitivity, full results in backup

ATLAS
CMS 4b bb𝛾𝛾 bb𝜏𝜏 Combination

σHH limit [x SM]

Early Run 2

Full Run 2 
(lumi scaling)

Full Run 2

Run 2+3 
(lumi scaling) dashed means by hand scaling

More data helps (as 
expected!!)

Expect to improve by a 
factor of 2x from scalingℒ
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* Note: Some places omitting sub-dominant channels to emphasize ones driving the sensitivity, full results in backup

ATLAS
CMS 4b bb𝛾𝛾 bb𝜏𝜏 Combination

σHH limit [x SM]

Early Run 2

Full Run 2 
(lumi scaling)

Full Run 2

Run 2+3 
(lumi scaling) dashed means by hand scaling

More data helps (as 
expected!!)

Expect to improve by a 
factor of 2x from scalingℒ

What about methods 
improvement?  
(A.k.a, b-tagging) 

Most of these analyses improved by a factor of 3!!  
(CMS 4b, bbττ improved by 5x )
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* Note: Some places omitting sub-dominant channels to emphasize ones driving the sensitivity, full results in backup

ATLAS
CMS 4b bb𝛾𝛾 bb𝜏𝜏 Combination

σHH limit [x SM]

Early Run 2

Full Run 2 
(lumi scaling)

Full Run 2

Run 2+3 
(lumi scaling)

New hot-off-the-press 
HH(4b) boosted analysis

dashed means by hand scaling
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Boosted analyses HHighlighting CMS boosted 
H(bb)-tagger, ParticleNet
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ParticleNet: 1902.08570 
Huilin Qu’s seminar 

DP-2020/002

Dynamic Graph Convolutional NN 
k nearest neighbors 

The graph connectivity can update in 
through successive EdgeConv layers

8

Figure 3. Performance of the algorithms for identifying hadronically decaying Higgs bosons (Left: H→bb; Right:
H→cc). A selection on the jet mass, 90 < mSD < 140 GeV, is applied in addition to the ML-based identification
algorithm when evaluating the signal and background efficiencies. For the signal (background), the generated
Higgs bosons (quarks and gluons) are required to satisfy 500 < pT < 1000 GeV and |η| < 2.4. For each of the two
DeepAK8-DDT algorithms, the marker indicates the performance of the nominal working point, DeepAK8-DDT
> 0, and its background efficiency (shown in the vertical axis) is different from the design value (5% or 2%) due to
the additional selection on the jet mass.
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https://arxiv.org/abs/1902.08570
https://cds.cern.ch/record/2707946/files/DP2020_002.pdf
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X→YH→4b

X→YH→4b: CMS-B2G-21-003 
ggF/VBF HH(4b): CMS-B2G-22-003

first

Tagger is so powerful at background 
rejection that the bkg estimate becomes 

simpler: a (few) normalization factors

Epic QCD 
rejection 

https://cms-results.web.cern.ch/cms-results/public-results/publications/B2G-21-003/index.html
https://cms-results.web.cern.ch/cms-results/public-results/publications/B2G-22-003/index.html


ParticleNet Analyses

17

baseline

RNNs
+Sets

Graphs

Trans-
formers
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X→YH→4b: CMS-B2G-21-003 
ggF/VBF HH(4b): CMS-B2G-22-003

first

VBF HH→4b

First analysis  
excluding κ2V = 0

1− 0.5− 0 0.5 1 1.5 2 2.5 3
2Vκ

1

10

210

310

) [
fb

]
bbb

(b
Β

 H
H

)
→

(p
p 

σ
95

%
 C

L 
lim

it 
on

 

Observed              σ 1±Expected 
Theory prediction    σ 2±Expected 
                                                

CMS Supplementary
 = 1Vκ = tκ = λκ

 (13 TeV)-1138 fb

κ2V

Tagger is so powerful at background 
rejection that the bkg estimate becomes 

simpler: a (few) normalization factors

Epic QCD 
rejection 

https://cms-results.web.cern.ch/cms-results/public-results/publications/B2G-21-003/index.html
https://cms-results.web.cern.ch/cms-results/public-results/publications/B2G-22-003/index.html


ParticleNet Analyses

17

baseline

RNNs
+Sets

Graphs

Trans-
formers

X→YH→4b

X→YH→4b: CMS-B2G-21-003 
ggF/VBF HH(4b): CMS-B2G-22-003

first

VBF HH→4b

First analysis  
excluding κ2V = 0

1− 0.5− 0 0.5 1 1.5 2 2.5 3
2Vκ

1

10

210

310

) [
fb

]
bbb

(b
Β

 H
H

)
→

(p
p 

σ
95

%
 C

L 
lim

it 
on

 

Observed              σ 1±Expected 
Theory prediction    σ 2±Expected 
                                                

CMS Supplementary
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 (13 TeV)-1138 fb

κ2V

Tagger is so powerful at background 
rejection that the bkg estimate becomes 

simpler: a (few) normalization factors

Epic QCD 
rejection 

ggF HH→4b

Boosted: 
Obs (exp): 9.9 (5.1) 

Resolved: 
Obs (exp): 5.4 (8.1) 
Obs (exp): 3.8 (7.8)

Note: only 3.6% of the 
SM HH signal is boosted 

(Luca’s slides)

https://cms-results.web.cern.ch/cms-results/public-results/publications/B2G-21-003/index.html
https://cms-results.web.cern.ch/cms-results/public-results/publications/B2G-22-003/index.html
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Inputs: 
➢ Jet  and  
➢ Track parameters, uncertainties, and impact parameters 
➢ Detailed hit information 
➢ Jet variables are concatenated with each track. 

Preprocessing: 
➢ Resampling of jet kinematics (  and ) for each flavour 

➢ Rather than providing discrimination, these variables 
then act as a parameterisation 

➢ Normalisation and shuffling applied 
➢ Result: 30M training jets, further 500k each val & test jets

pT η

pT η GN1Lep: 

➢ Semileptonically decaying b-hadron indicated by 
leptons in the jets. 

➢ Simple way to include this information: add a 
track variable indicating if the track has been used 
in the reconstruction of an electron or muon.

https://arxiv.org/abs/2002.08772
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2022-027/
https://indico.cern.ch/event/1232499/
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➢ Jet variables are concatenated with each track. 
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➢ Resampling of jet kinematics (  and ) for each flavour 

➢ Rather than providing discrimination, these variables 
then act as a parameterisation 

➢ Normalisation and shuffling applied 
➢ Result: 30M training jets, further 500k each val & test jets

pT η

pT η GN1Lep: 

➢ Semileptonically decaying b-hadron indicated by 
leptons in the jets. 

➢ Simple way to include this information: add a 
track variable indicating if the track has been used 
in the reconstruction of an electron or muon.

e(hi, hj) = a⊥θ [Whi ⊕ Whj]
aij = Softmaxj[e(hi, hj)]

h′￼i = σ ∑
j∈𝒩i

aij ⋅ Whi[ ]

1806.01261

https://arxiv.org/abs/2002.08772
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2022-027/
https://indico.cern.ch/event/1232499/
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➢ Semileptonically decaying b-hadron indicated by 
leptons in the jets. 

➢ Simple way to include this information: add a 
track variable indicating if the track has been used 
in the reconstruction of an electron or muon.

ℒtot = ℒjet ℒtrk ℒvtx+α +β
β = 1.5α = 0.5

Multi-modal learning!

e(hi, hj) = a⊥θ [Whi ⊕ Whj]
aij = Softmaxj[e(hi, hj)]

h′￼i = σ ∑
j∈𝒩i

aij ⋅ Whi[ ]
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https://arxiv.org/abs/2002.08772
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2022-027/
https://indico.cern.ch/event/1232499/
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2022-027/
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Gain coming from the vertex finding and track classification aux tasks.

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2022-027/
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Group tracks together if they have a pair-wise compatibility > 0.5
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decay vertex
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/FTAG-2023-01/
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Trigger efficiency as a function of the invariant mass mHH for the simulated Standard Model HH→4b process 
with 𝛋𝜆 = 1 shown for Run 2 (black), Run 3 2022  (blue) and Run 3 2023 trigger (orange). The two Higgs 
boson candidates are reconstructed from four central jets with the highest b-tagging scores. The trigger 
efficiency achieved by the new strategy is 82%, improved by 57% with respect to Run 2 and 20% with respect 
to 2022. The better performance of ParticleNet tagging on small-radius jets with respect to Run 2 taggers and 
the lowered HT requirement from 360 GeV to 280 GeV at the L1 trigger result in a higher trigger efficiency on 
the full spectrum of the mHH distribution. 

b-jet trigger public plots 
DP 2023/050 

L. Cadamuro HH ws talk

*Different denominators of these two plots… not apples-to-apples

Recall from 
Petar’s talk Now with GN1 With ParticleNet

For small-R jets.. in the trigger

2b trigger

3b trigger

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/BJetTriggerPublicResults
https://cds.cern.ch/record/2868787/files/DP2023_050.pdf
https://indico.cern.ch/event/1001391/contributions/4842925/attachments/2455652/4208916/HH_experimental_summary.pdf
https://indico.cern.ch/event/1334055/contributions/5813261/
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boson candidates are reconstructed from four central jets with the highest b-tagging scores. The trigger 
efficiency achieved by the new strategy is 82%, improved by 57% with respect to Run 2 and 20% with respect 
to 2022. The better performance of ParticleNet tagging on small-radius jets with respect to Run 2 taggers and 
the lowered HT requirement from 360 GeV to 280 GeV at the L1 trigger result in a higher trigger efficiency on 
the full spectrum of the mHH distribution. 

b-jet trigger public plots 
DP 2023/050 

L. Cadamuro HH ws talk

*Different denominators of these two plots… not apples-to-apples

Recall from 
Petar’s talk Now with GN1 With ParticleNet

For small-R jets.. in the trigger

2b trigger

3b trigger

New trigger will reduce key background 
systematic from the limited 3b Control 

Region statistics

B D

CA

4b

3b
Control Region 
not close to mH

Higgs Cand 
close to mH

Train Apply

Signal Region

2b

Background  
estimation with 
BDT

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/BJetTriggerPublicResults
https://cds.cern.ch/record/2868787/files/DP2023_050.pdf
https://indico.cern.ch/event/1001391/contributions/4842925/attachments/2455652/4208916/HH_experimental_summary.pdf
https://indico.cern.ch/event/1334055/contributions/5813261/
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Transformer special type of 
GNN… but much easier to train!

Ex: chatGPT

Attention is All You Need: 1706.03762

Better!

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/FTAG-2023-01/
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The FTAG CP gain for 
Run 2 HH analyses

Transformer-based tagger 
 more training jets 

[300m 😱 ]
𝒪(10)

FTAG-2023-01

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/FTAG-2023-01/
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5

Figure 1. Performance of the DeepJet and ParticleTransformerAK4 algorithms for identifying AK4 jets. The plot shows the probability
of misidentification of non-b jets as b jets with respect to the efficiency of identifying b jets. These results are obtained using jets with
|𝜂|<2.5 and pT > 30 GeV from simulated top quark pair events. We separate the misidentification of the udsg jets, the dashed lines, and
c jets, the plain lines. We can observe an improvement compared to DeepJet for both types of misidentification. The performance
improvement is more substantial for identifying b jets against c jets than udsg jets.

5

Figure 1. Performance of the DeepJet and ParticleTransformerAK4 algorithms for identifying AK4 jets. The plot shows the probability
of misidentification of non-b jets as b jets with respect to the efficiency of identifying b jets. These results are obtained using jets with
|𝜂|<2.5 and pT > 30 GeV from simulated top quark pair events. We separate the misidentification of the udsg jets, the dashed lines, and
c jets, the plain lines. We can observe an improvement compared to DeepJet for both types of misidentification. The performance
improvement is more substantial for identifying b jets against c jets than udsg jets.

Particle Transformer 
(ParT) also has access 
to info about the two 
track pairs. 

https://arxiv.org/pdf/2202.03772.pdf
https://cds.cern.ch/record/2839920/files/DP2022_050.pdf
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Conclusion

Shallow 
NNs / BDTs

Deep NNs 
(RNNs / Sets)

Graph NNs

Transformers

early Run 2

full Run 2

late Run 2 / 
early Run 3

State of the 
art 

In HH analyses

In the triggerML is transforming the way we do physics 
and the H(bb) results that are now key driver 

for our HH / YH search programs

Boosted: 
Obs (exp): 9.9 (5.1) 
Resolved: 

Obs (exp): 5.4 (8.1) 

Obs (exp): 3.8 (7.8)

3x - 5x improvements! 
(2x from )ℒ
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Why so small?
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box
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H
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V(ϕ) = μ2h(x)2 + λvh(x)3 +
1
4

λh(x)4

triangle

σggF,HH = 31.05 fb

!!! (tiny)
1000x lower than single Higgs



What does it look like?

28

H
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λ

λSM
Parametrize deviations as:

1 Rate
2 Shape



ATLAS golden channels
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From ATLAS
bb𝛾𝛾 HDBS-2018-34,
bb𝜏𝜏 HDBS-2018-40, and 
4b HDBS-2019-29 analyses.

Orders of 
magnitude higher 

background for 4b.

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HDBS-2018-34/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HDBS-2018-40/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HDBS-2019-29/
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Small R: 
• ATLAS: MV2 
• CMS: DeepCSV (?)
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b-tagging
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Key variable: impact parameter



Combined Secondary Vertex (CSVv2)
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1712.07158

18

the training was performed in bins of the jet kinematics. In the current procedure,
the bins of jet kinematics are only used to combine the vertex categories after the
training.

Table 1: Input variables used for the Run 1 version of the CSV algorithm and for the CSVv2
algorithm. The symbol “x” (“—”) means that the variable is (not) used in the algorithm

Input variable Run 1 CSV CSVv2
SV 2D flight distance significance x x
Number of SV — x
Track hrel x x
Corrected SV mass x x
Number of tracks from SV x x
SV energy ratio x x
DR(SV, jet) — x
3D IP significance of the first four tracks x x
Track pT,rel — x
DR(track, jet) — x
Track pT,rel ratio — x
Track distance — x
Track decay length — x
Summed tracks ET ratio — x
DR(summed tracks, jet) — x
First track 2D IP significance above c threshold — x
Number of selected tracks — x
Jet pT — x
Jet h — x

Figure 12 shows the distribution of the discriminator values for the various jet flavours for both
versions of the CSVv2 algorithm.

5.1.2.2 The DeepCSV tagger The identification of jets from heavy-flavour hadrons can
be improved by using the advances in the field of deep machine learning [38]. A new version of
the CSVv2 tagger, “DeepCSV”, was developed using a deep neural network with more hidden
layers, more nodes per layer, and a simultaneous training in all vertex categories and for all jet
flavours.

The same tracks and IVF secondary vertices are used in this approach as for the CSVv2 tagger.
The same input variables are also used, with only one difference, namely that for the track-
based variables up to six tracks are used in the training of the DeepCSV. Jets are randomly
selected in such a way that similar jet pT and h distributions are obtained for all jet flavours.
These jet pT and h distributions are also used as input variables in the training to take into
account the correlation between the jet kinematics and the other variables. The distribution of
all input variables is preprocessed to centre the mean of each distribution around zero and to
obtain a root-mean-square value of unity. All of the variables are presented to the multivariate
analysis (MVA) in the same way because of the preprocessing. This speeds up the training. In
case a variable cannot be reconstructed, e.g. because there are less than six selected tracks (or
no secondary vertex), the variable values associated with the missing track or vertex are set to
zero after the preprocessing.

The training is performed using jets with pT between 20 GeV and 1 TeV, and within the tracker
acceptance. The relative ratio of the number of jets of each flavour is set to 2 : 1 : 4 for b : c :

Vertex based

Track based

https://arxiv.org/abs/1712.07158
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SV1

10Philipp Gadow | Heavy flavour jet tagging algorithms in ATLAS 25.07.23

Secondary vertices are characteristic for b-jets. 
SV1 is based on single-secondary-vertex-finding algorithms searching for combinations of tracks 
originating from a common secondary vertex.

ATL-PHYS-PUB-2017-011

Two-track vertices are built from all tracks 
associated with jet and are then iteratively 
merged until one secondary vertex (SV) remains. 

Ks, Λ0, and photon conversions are removed 
by imposing requirements on chi2 and mass. 

Reconstructed secondary vertex provides 
discriminating observables like SV mass, SV 
energy fraction, decay length significance, ... 

ATL-PHYS-PUB-2017-011 
P. Gadow’s slide

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2017-011/
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JetFitter

11Philipp Gadow | Heavy flavour jet tagging algorithms in ATLAS 25.07.23

ATL-PHYS-PUB-2018-025

JetFitter follows cascade decays of B hadrons to charmed hadrons (D mesons) and tries to 
reconstruct both secondary and tertiary vertices secondary using an extended Kalman Filter 
for the search for a common axis connecting the three vertices. 

truth reconstruction

ATL-PHYS-PUB-2018-025 
P. Gadow’s slide

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2018-025/


Recurrent Neural Networks 
Convolutional Neural Networks

Deep Neural Networks 
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Small R: 
• ATLAS: DL1r (PFlow) 
• CMS: DeepJet

Large R: 
• ATLAS: Xbb 

• DNN trained on leading 3 associated VR 
track jets w/ the dedicated DL1r training 

• CMS: DeepAK8 



DL1r improvement
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2211.16345

https://arxiv.org/abs/2211.16345


DL1r pT dependence
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2211.16345

https://arxiv.org/abs/2211.16345
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Calibration
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Flavour-tagging efficiency corrections for the 2019 ATLAS 
PFlow jet b-taggers with the full LHC Run II dataset
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% level errors on 
this measurement😃
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First time RNN-based b-jet 
tagger was calibrated….  

Key aspect of using in a 
physics analysis

http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/FTAG-2020-001/
http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/FTAG-2020-001/
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Network of networks!!

✓ Computationally efficient
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DIPS
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Similar performance with the same inputs 
4x speed-up in the training time!!!

better

ATL-PHYS-PUB-2020-014
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Faster turn around time for physics optimizations
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Include my name + email 
Emphasize ML techniques

DIPS more 
performant for a 
high efficiency 
track selection

nominal: from before (pT > 1 GeV, |d0| < 1 mm, |z0 sin θ| < 1.5 mm) 
loose: poorer quality (pT > 1 GeV, |d0| < 1 mm, |z0 sin θ| < 1.5 mm) 
Optimized DIPS: loose selection + new inputs (d0, z0 sin θ)

ATL-PHYS-PUB-2020-014
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DIPS in Data Acquisition
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How do we decide which events to save?
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DIPS in Data Acquisition
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How do we decide which events to save?

DIPS now in the 
software trigger
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In real time
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DIPS
ATLAS b-jet triggerRun 3

2022 2023 exit for GN1

b-jet trigger 
public plots

DIPS is deciding 
which events to keep 
during data-taking 
happening now!!

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/BJetTriggerPublicResults


Background composition: Case study
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How shall we balance charm 
versus light rejection?

Run 2 HH4b Non-Res

NH thesis

Db = log
pb

fc ⋅ pc + (1 − fc) ⋅ pl

https://cds.cern.ch/record/2878542/


Deep Jet inputs
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Global variables
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# neutral pflow cand

# SV in jet
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Track 2d IP significance
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Track distance to jet axis
Fraction of jet momentum 
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PUPPI weight
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Neural pflow variables 
[up to 25]

Fraction of jet momentum 
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Secondary vertex  
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SV pT
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1x1 conv. 64/32/32/8

1x1 conv. 32/16/4

1x1 conv. 64/32/32/8

RNN 150 

RNN 50 

RNN 50 Secondary Vtx (12 features) x4

Global variables (6 features)

(6

Figure 1. An illustration of the DeepJet architecture. Three seperate branches are used to process charged
candidates, neutral candidates and secondary vertices. The algorithm makes use of 1x1 convolutional layers
to perform automatic feature engineering for each class of jet constituents. The three RNN (LSTM) layers
combine the information for each sequence of constituents. Finally the full jet information is combined using
fully connected layers.
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Figure 2. Performance of the DeepJet and DeepCSV b-tagging algorithms on CC̄ events with both top quarks
decaying hadronically. The jets are required to have pT > 30 GeV (left) and pT > 90 GeV (right). The
performance is shown for both b vs. c classification (dashed lines), and b vs. light (solid lines).

4 Performance

4.1 Comparison with other b-tagging algorithms

The overall performance of DeepJet is compared to the CMS b-tagger DeepCSV, which is a
multi-classifier embedded in the CMS reconstruction framework, and which uses similar, but strongly
preselected, inputs along with additional high-level variables. The comparison is made on a fully
hadronic CC̄ sample, as shown in Fig. 2. DeepJet performs significantly better than DeepCSV with an
e�ciency2 increase of almost 20% at 10�3 misidentification probability3 for jets with pT > 90GeV.

The performance of the classifiers can also be compared on a set of multi-jet QCD events, which
allow accessing higher jet momenta. The inclusive results are shown in Fig. 3. A comparison for
di�erent jet pT can be found in Fig. 4 for fixed light jet misidentification probabilities. In both cases
DeepJet shows an increasing performance gain, in particular for higher jet pT, presumably exploiting
the information contained in all constituents.

2True Positive Rate.
3False Positive Rate.
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Figure 3. The performance of DeepJet and DeepCSV in three di�erent jet pT ranges in QCD multÚet events.
The performance is shown for both b vs. c (dashed lines), and b vs. light (solid lines).
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these models are compared with DeepCSV and DeepJet in Fig. 8 for inclusive CC̄ events. Increasing
the number of inputs does not help much, when it is not complemented by a network structure
that allows e�cient processing of the larger and less pure track set. However adopting the new
architecture without increasing the input and removing the track selection also has limited gain.
Similar improvements coming with similar preprocessing of unselected jet constituent inputs could
be observed in the Deep Set based tagger [20]. This qualitative statement also explains the additional
gain observed in DeepJet at high jet pT as the track selection was historically optimised for mild jet
boosts.
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Figure 8. An interpolation between the DeepCSV tagger [19] and DeepJet.

The default DeepJet architecture is also compared to an adapted architecture employing the
Deep Set idea. In the DeepSet approach it is required to project the single objects into a high
dimensional feature space, whereas the DeepJet model compresses the features. To mimic DeepSet,
the DeepJet architecture is adapted as follows: the 1x1 convolutional branches are extended to
contain 100 filters, each, increasing the number of free parameters. The final layer of each branch is
enlarged further, with the charged branch being set to 256 filters, whereas the vertex and the neutral
branch are set to 128 filters. At the same time, the LSTM layers are replaced by a simple sum that is
evaluated independently for each convolutional branch, after which these sums are concatenated and
fed to a series of fully connected layers. Another comparison model is added that shows a DeepJet
model with the same enlarged convolutional structure as the DeepSet model, but keeping the LSTM
for aggregating the tracks.

As shown in Fig. 9, the performance of the Deep Set based architecture shows a slight gain
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for b to c jet identification, but shows no significant di�erence with respect to the b to light jet
identification or the quark/gluon discrimination performance compared to the default DeepJet
architecture. The DeepJet model using enlarged convectional filters performs slightly better than
DeepSet, but like DeepSet, it projects the input objects into large features spaces, leading to increased
resource requirements for the subsequent LSTMs.
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Figure 9. Comparison of the DeepJet architecture, an adapted DeepJet architecture based on the Deep Sets
approach, and a DeepJet model with enlarged number of convolutional filters. Left: b jet identification
performance. Right: quark/gluon jet separation performance.

5 Conclusion

A multiclass flavour tagging algorithm, DeepJet, has been developed to exploit the full information
in a jet. The model was tested using CMS simulation. The model relies on low-level variables and
loose selection of the inputs, and it uses an architecture that can process these inputs in an e�cient
manner. When compared with fully connected models using a smaller set of engineered features
a gain in performance is observed in all topologies of flavour tagging, in some cases exceeding a
two-fold e�ciency gain for the same misidentification rate. The model goes beyond heavy flavour
tagging and performs quark-gluon discrimination as well. The applicability of the DeepJet approach
has been successfully extended in di�erent directions, such as the construction of tagging algorithms
for exotic long lived particles [39].

DeepJet has been trained using the homonymous github package [40, 41], with a streamlined
training process and multi-threaded data access. The training set has been scraped from the simulation
data using [42], which contains an algorithmic description of all the variables used in the training.
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to perform automatic feature engineering for each class of jet constituents. The three RNN (LSTM) layers
combine the information for each sequence of constituents. Finally the full jet information is combined using
fully connected layers.
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Figure 2. Performance of the DeepJet and DeepCSV b-tagging algorithms on CC̄ events with both top quarks
decaying hadronically. The jets are required to have pT > 30 GeV (left) and pT > 90 GeV (right). The
performance is shown for both b vs. c classification (dashed lines), and b vs. light (solid lines).

4 Performance

4.1 Comparison with other b-tagging algorithms

The overall performance of DeepJet is compared to the CMS b-tagger DeepCSV, which is a
multi-classifier embedded in the CMS reconstruction framework, and which uses similar, but strongly
preselected, inputs along with additional high-level variables. The comparison is made on a fully
hadronic CC̄ sample, as shown in Fig. 2. DeepJet performs significantly better than DeepCSV with an
e�ciency2 increase of almost 20% at 10�3 misidentification probability3 for jets with pT > 90GeV.

The performance of the classifiers can also be compared on a set of multi-jet QCD events, which
allow accessing higher jet momenta. The inclusive results are shown in Fig. 3. A comparison for
di�erent jet pT can be found in Fig. 4 for fixed light jet misidentification probabilities. In both cases
DeepJet shows an increasing performance gain, in particular for higher jet pT, presumably exploiting
the information contained in all constituents.
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Figure 2. Performance of the DeepJet and DeepCSV b-tagging algorithms on CC̄ events with both top quarks
decaying hadronically. The jets are required to have pT > 30 GeV (left) and pT > 90 GeV (right). The
performance is shown for both b vs. c classification (dashed lines), and b vs. light (solid lines).

4 Performance

4.1 Comparison with other b-tagging algorithms

The overall performance of DeepJet is compared to the CMS b-tagger DeepCSV, which is a
multi-classifier embedded in the CMS reconstruction framework, and which uses similar, but strongly
preselected, inputs along with additional high-level variables. The comparison is made on a fully
hadronic CC̄ sample, as shown in Fig. 2. DeepJet performs significantly better than DeepCSV with an
e�ciency2 increase of almost 20% at 10�3 misidentification probability3 for jets with pT > 90GeV.

The performance of the classifiers can also be compared on a set of multi-jet QCD events, which
allow accessing higher jet momenta. The inclusive results are shown in Fig. 3. A comparison for
di�erent jet pT can be found in Fig. 4 for fixed light jet misidentification probabilities. In both cases
DeepJet shows an increasing performance gain, in particular for higher jet pT, presumably exploiting
the information contained in all constituents.
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A. Novak’s slide

b-Tagging with DeepJet
• Number of HH results with resolved b-jets
• Strongest observed HH cross-section constraints
• First H± → HW ± results at LHC

7/25/2023 To b or not to b - CMS BTV Workshop 2023 19

HH →4 leptons + 2 b

HH →4 bs

HH →2 tau + 2 b

HIG-20-004 HIG-20-010 
HIG-21-010 HIG-20-005
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Impact on analysis strategy
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When you put so much ML into the Higgs-jet identification the 
analysis strategy simplifies dramatically! 
• Stat uncertainties now dominant, no need for a detailed background description, a simple 

QCD normalization is (often) sufficient. 
• As the QCD bkg plummets, more important to model the ttbar contribution separately and 

constrain in dedicated CRs



Background estimation… boosted ParticleNet analyses
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HH NR ggFHH NR VBFHY resonant
PhysRevLett.131.041803PhysLetB.2022.137392

https://cms-results.web.cern.ch/cms-results/public-results/publications/B2G-22-003/index.html
https://cms-results.web.cern.ch/cms-results/public-results/publications/B2G-21-003/index.html
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tt̄ Z′￼ → qq̄
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Table 2: Input features to the GN1 model. Basic jet kinematics, along with information about the reconstructed track
parameters and constituent hits are used. Shared hits, are hits used on multiple tracks which have not been classified
as split by the cluster-splitting neural networks [15], while split hits are hits used on multiple tracks which have been
identified as merged. A hole is a missing hit, where one is expected, on a layer between two other hits on a track. The
track leptonID is an additional input to the GN1 Lep model.

Jet Input Description
?T Jet transverse momentum
[ Signed jet pseudorapidity
Track Input Description
@/? Track charge divided by momentum (measure of curvature)
d[ Pseudorapidity of the track, relative to the jet [
dq Azimuthal angle of the track, relative to the jet q
30 Closest distance from the track to the PV in the longitudinal plane
I0 sin \ Closest distance from the track to the PV in the transverse plane
f(@/?) Uncertainty on @/?
f(\) Uncertainty on track polar angle \
f(q) Uncertainty on track azimuthal angle q
B(30) Lifetime signed transverse IP significance
B(I0) Lifetime signed longitudinal IP significance
nPixHits Number of pixel hits
nSCTHits Number of SCT hits
nIBLHits Number of IBL hits
nBLHits Number of B-layer hits
nIBLShared Number of shared IBL hits
nIBLSplit Number of split IBL hits
nPixShared Number of shared pixel hits
nPixSplit Number of split pixel hits
nSCTShared Number of shared SCT hits
nPixHoles Number of pixel holes
nSCTHoles Number of SCT holes
leptonID Indicates if track was used in the reconstruction of an electron or muon (only for GN1 Lep)

Table 3: Truth origins which are used to categorise the physics process that led to the production of a track. Tracks
are matched to charged particles using the truth-matching probability [15]. A truth-matching probability of less
than 0.5 indicates that reconstructed track parameters are likely to be mismeasured and may not correspond to the
trajectory of a single charged particle. The “OtherSecondary” origin includes tracks from photon conversions,  0

S
and ⇤0 decays, and hadronic interactions.

Truth Origin Description
Pileup From a ?? collision other than the primary interaction
Fake Created from the hits of multiple particles
Primary Does not originate from any secondary decay
fromB From the decay of a 1-hadron
fromBC From a 2-hadron decay, which itself is from the decay of a 1-hadron
fromC From the decay of a 2-hadron
OtherSecondary From other secondary interactions and decays

7

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2022-027/
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b-jet trigger 
public plots

Asymmetric triggers in 2022

The composition of 
triggers making up the 
main physics stream

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/BJetTriggerPublicResults


HH → bbτhadτhad
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Tau trig public plots

0

0.2

0.4

0.6

0.8

1

1.2

Tr
ig

ge
r e

ffi
ci

en
cy

 = 88.8%)ττbb→(HHεAll triggers: 
 = 74.4%)ττbb→(HHε-triggers: τRun 3 
 = 69.0%)ττbb→(HHε-triggers: τRun 2 

 = 67.7%)ττbb→(HHε4 jets (2 b-tagged): 

300 400 500 600 700 800 900 1000
 [GeV]Truth

HHm

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

R
at

io
 to

 R
un

 2

ATLAS Simulation
Preliminary

 = 13.6 TeVs
hτhτ=1, bbλκ

Offline selection:
-IDτ|<2.5, loose RNN η>25 GeV, |vis

T
 p0τ

-IDτ|<2.5, loose RNN η>20 GeV, |vis
T

 p1τ

|<2.5,η>20 GeV, |
T

2 jets, p
 82%)≈bεb-tagged (GN2, 

0

0.2

0.4

0.6

0.8

1

1.2

Tr
ig

ge
r e

ffi
ci

en
cy

 = 78.4%)ττbb→(HHεAll triggers: 
 = 58.4%)ττbb→(HHε-triggers: τRun 3 
 = 54.1%)ττbb→(HHε-triggers: τRun 2 

 = 52.7%)ττbb→(HHε4 jets (2 b-tagged): 

300 400 500 600 700 800 900 1000
 [GeV]Truth

HHm

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

R
at

io
 to

 R
un

 2

ATLAS Simulation
Preliminary

 = 13.6 TeVs
hτhτ=1, bbλκ

Offline selection:
|<2.5, truth-matchedη>25 GeV, |vis

T
 p0τ

|<2.5, truth-matchedη>20 GeV, |vis
T

 p1τ
|<2.5, truth-matchedη>20 GeV, |

T
2 b-jets, p

Truth b-jets GN2-tagged b-jets

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TauTriggerPublicResults#Plots_for_Higgs_2023


CMS: bbtautau trigger
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10

Trigger efficiency as a function of the invariant mass mHH for the simulated Standard Model HH→2b2𝛕had 
process with 𝛋𝜆 = 1 shown for Run 3 hadronic 𝛕 triggers  (blue), Run 3 2023 HH trigger (orange) and a 
combination of both triggers (green). The two Higgs boson candidates are reconstructed from two loose 
b-tagged (DeepJet [6], 10% mis-identification on usdg-jets) central jets and two 𝛕 candidates satisfying a 
loose hadronic 𝛕 identification (DeepTau [7], 80% identification of hadronic 𝛕). The trigger efficiency achieved 
by the new strategy is 43% and the hadronic 𝛕 triggers efficiency is 34%. Combining both triggers together 
with the missing transverse energy trigger results in a 58% trigger efficiency. 

[6] CMS-BTV-20-001 [7] CMS-TAU-20-001  

DP 2023/050

https://cds.cern.ch/record/2868787/files/DP2023_050.pdf


ATLAS: GN2 
CMS: ParticleTransformer (ParT)

Transformers 
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GN2: Z’ eval
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Particle Transformer
Particle Transformer for Jet Tagging
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Figure 3. The architecture of (a) Particle Transformer (b) Particle Attention Block (c) Class Attention Block.

of particles, in a shape (N, N,C 0). The particle and inter-
action inputs are each followed by an MLP to project them
to a d- and d0-dimensional embedding, x0

2 RN⇥d and
U 2 RN⇥N⇥d0

, respectively. Unlike Transformers for NLP
and vision, we do not add any ad-hoc positional encodings,
as the particles in a jet are permutation invariant. The spatial
information (i.e., the flying direction of each particle) is
directly included in the particle inputs. We feed the particle
embedding x0 into a stack of L particle attention blocks
to produce new embeddings, x1, ...,xL via multi-head self
attention. The interaction matrix U is used to augment the
scaled dot-product attention by adding it as a bias to the
pre-softmax attention weights. The same U is used for all
the particle attention blocks. After that, the last particle
embedding xL is fed into two class attention blocks, and a
global class token xclass is used to extract information for
jet classification via attention to all the particles, following
the CaiT approach (Touvron et al., 2021). The class token
is passed to a single-layer MLP, followed by softmax, to
produce the final classification scores.

Remark. ParT can also be viewed as a graph neural network
on a fully-connected graph, in which each node corresponds
to a particle, and the interactions are the edge features.

Particle interaction features. While the ParT architecture
is designed to be able to process any kinds of pairwise in-

teraction features, for this paper we only consider a specific
scenario in which the interaction features are derived from
the energy-momentum 4-vector, p = (E, px, py, pz), of
each particle. This is the most general case for jet tagging,
as the particle 4-vectors are available in every jet tagging
task. Specifically, for a pair of particles a, b with 4-vectors
pa, pb, we calculate the following 4 features:

� =
p

(ya � yb)2 + (�a � �b)2,

kT = min(pT,a, pT,b)�,

z = min(pT,a, pT,b)/(pT,a + pT,b),

m2 = (Ea + Eb)
2

� kpa + pbk
2,

(3)

where yi is the rapidity, �i is the azimuthal angle, pT,i =
(p2x,i + p2y,i)

1/2 is the transverse momentum, and pi =
(px,i, py,i, pz,i) is the momentum 3-vector and k · k is the
norm, for i = a, b. Since these variables typically have
a long-tail distribution, we take the logarithm and use
(ln �, ln kT, ln z, ln m2) as the interaction features for each
particle pair. The choice of this set of features is motivated
by Dreyer & Qu (2021).

Particle attention block. A key component of ParT is the
particle attention block. As illustrated in Figure 3(b), the
particle attention block consists of two stages. The first
stage includes a multi-head attention (MHA) module with
a LayerNorm (LN) layer both before and afterwards. The

Fig 3a from 2202.03772
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Figure 3. The architecture of (a) Particle Transformer (b) Particle Attention Block (c) Class Attention Block.

of particles, in a shape (N, N,C 0). The particle and inter-
action inputs are each followed by an MLP to project them
to a d- and d0-dimensional embedding, x0

2 RN⇥d and
U 2 RN⇥N⇥d0

, respectively. Unlike Transformers for NLP
and vision, we do not add any ad-hoc positional encodings,
as the particles in a jet are permutation invariant. The spatial
information (i.e., the flying direction of each particle) is
directly included in the particle inputs. We feed the particle
embedding x0 into a stack of L particle attention blocks
to produce new embeddings, x1, ...,xL via multi-head self
attention. The interaction matrix U is used to augment the
scaled dot-product attention by adding it as a bias to the
pre-softmax attention weights. The same U is used for all
the particle attention blocks. After that, the last particle
embedding xL is fed into two class attention blocks, and a
global class token xclass is used to extract information for
jet classification via attention to all the particles, following
the CaiT approach (Touvron et al., 2021). The class token
is passed to a single-layer MLP, followed by softmax, to
produce the final classification scores.

Remark. ParT can also be viewed as a graph neural network
on a fully-connected graph, in which each node corresponds
to a particle, and the interactions are the edge features.

Particle interaction features. While the ParT architecture
is designed to be able to process any kinds of pairwise in-

teraction features, for this paper we only consider a specific
scenario in which the interaction features are derived from
the energy-momentum 4-vector, p = (E, px, py, pz), of
each particle. This is the most general case for jet tagging,
as the particle 4-vectors are available in every jet tagging
task. Specifically, for a pair of particles a, b with 4-vectors
pa, pb, we calculate the following 4 features:

� =
p

(ya � yb)2 + (�a � �b)2,

kT = min(pT,a, pT,b)�,

z = min(pT,a, pT,b)/(pT,a + pT,b),

m2 = (Ea + Eb)
2

� kpa + pbk
2,

(3)

where yi is the rapidity, �i is the azimuthal angle, pT,i =
(p2x,i + p2y,i)

1/2 is the transverse momentum, and pi =
(px,i, py,i, pz,i) is the momentum 3-vector and k · k is the
norm, for i = a, b. Since these variables typically have
a long-tail distribution, we take the logarithm and use
(ln �, ln kT, ln z, ln m2) as the interaction features for each
particle pair. The choice of this set of features is motivated
by Dreyer & Qu (2021).

Particle attention block. A key component of ParT is the
particle attention block. As illustrated in Figure 3(b), the
particle attention block consists of two stages. The first
stage includes a multi-head attention (MHA) module with
a LayerNorm (LN) layer both before and afterwards. The

Left: (recreated) Fig 2a from 1706.03762 
Right: Fig 3b from 2202.03772
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Figure 3. The architecture of (a) Particle Transformer (b) Particle Attention Block (c) Class Attention Block.

of particles, in a shape (N, N,C 0). The particle and inter-
action inputs are each followed by an MLP to project them
to a d- and d0-dimensional embedding, x0

2 RN⇥d and
U 2 RN⇥N⇥d0

, respectively. Unlike Transformers for NLP
and vision, we do not add any ad-hoc positional encodings,
as the particles in a jet are permutation invariant. The spatial
information (i.e., the flying direction of each particle) is
directly included in the particle inputs. We feed the particle
embedding x0 into a stack of L particle attention blocks
to produce new embeddings, x1, ...,xL via multi-head self
attention. The interaction matrix U is used to augment the
scaled dot-product attention by adding it as a bias to the
pre-softmax attention weights. The same U is used for all
the particle attention blocks. After that, the last particle
embedding xL is fed into two class attention blocks, and a
global class token xclass is used to extract information for
jet classification via attention to all the particles, following
the CaiT approach (Touvron et al., 2021). The class token
is passed to a single-layer MLP, followed by softmax, to
produce the final classification scores.

Remark. ParT can also be viewed as a graph neural network
on a fully-connected graph, in which each node corresponds
to a particle, and the interactions are the edge features.

Particle interaction features. While the ParT architecture
is designed to be able to process any kinds of pairwise in-

teraction features, for this paper we only consider a specific
scenario in which the interaction features are derived from
the energy-momentum 4-vector, p = (E, px, py, pz), of
each particle. This is the most general case for jet tagging,
as the particle 4-vectors are available in every jet tagging
task. Specifically, for a pair of particles a, b with 4-vectors
pa, pb, we calculate the following 4 features:

� =
p

(ya � yb)2 + (�a � �b)2,

kT = min(pT,a, pT,b)�,

z = min(pT,a, pT,b)/(pT,a + pT,b),

m2 = (Ea + Eb)
2

� kpa + pbk
2,

(3)

where yi is the rapidity, �i is the azimuthal angle, pT,i =
(p2x,i + p2y,i)

1/2 is the transverse momentum, and pi =
(px,i, py,i, pz,i) is the momentum 3-vector and k · k is the
norm, for i = a, b. Since these variables typically have
a long-tail distribution, we take the logarithm and use
(ln �, ln kT, ln z, ln m2) as the interaction features for each
particle pair. The choice of this set of features is motivated
by Dreyer & Qu (2021).

Particle attention block. A key component of ParT is the
particle attention block. As illustrated in Figure 3(b), the
particle attention block consists of two stages. The first
stage includes a multi-head attention (MHA) module with
a LayerNorm (LN) layer both before and afterwards. The

Left: (recreated) Fig 2a from 1706.03762 
Right: Fig 3b from 2202.03772
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Figure 3. The architecture of (a) Particle Transformer (b) Particle Attention Block (c) Class Attention Block.

of particles, in a shape (N, N,C 0). The particle and inter-
action inputs are each followed by an MLP to project them
to a d- and d0-dimensional embedding, x0

2 RN⇥d and
U 2 RN⇥N⇥d0

, respectively. Unlike Transformers for NLP
and vision, we do not add any ad-hoc positional encodings,
as the particles in a jet are permutation invariant. The spatial
information (i.e., the flying direction of each particle) is
directly included in the particle inputs. We feed the particle
embedding x0 into a stack of L particle attention blocks
to produce new embeddings, x1, ...,xL via multi-head self
attention. The interaction matrix U is used to augment the
scaled dot-product attention by adding it as a bias to the
pre-softmax attention weights. The same U is used for all
the particle attention blocks. After that, the last particle
embedding xL is fed into two class attention blocks, and a
global class token xclass is used to extract information for
jet classification via attention to all the particles, following
the CaiT approach (Touvron et al., 2021). The class token
is passed to a single-layer MLP, followed by softmax, to
produce the final classification scores.

Remark. ParT can also be viewed as a graph neural network
on a fully-connected graph, in which each node corresponds
to a particle, and the interactions are the edge features.

Particle interaction features. While the ParT architecture
is designed to be able to process any kinds of pairwise in-

teraction features, for this paper we only consider a specific
scenario in which the interaction features are derived from
the energy-momentum 4-vector, p = (E, px, py, pz), of
each particle. This is the most general case for jet tagging,
as the particle 4-vectors are available in every jet tagging
task. Specifically, for a pair of particles a, b with 4-vectors
pa, pb, we calculate the following 4 features:

� =
p

(ya � yb)2 + (�a � �b)2,

kT = min(pT,a, pT,b)�,

z = min(pT,a, pT,b)/(pT,a + pT,b),

m2 = (Ea + Eb)
2

� kpa + pbk
2,

(3)

where yi is the rapidity, �i is the azimuthal angle, pT,i =
(p2x,i + p2y,i)

1/2 is the transverse momentum, and pi =
(px,i, py,i, pz,i) is the momentum 3-vector and k · k is the
norm, for i = a, b. Since these variables typically have
a long-tail distribution, we take the logarithm and use
(ln �, ln kT, ln z, ln m2) as the interaction features for each
particle pair. The choice of this set of features is motivated
by Dreyer & Qu (2021).

Particle attention block. A key component of ParT is the
particle attention block. As illustrated in Figure 3(b), the
particle attention block consists of two stages. The first
stage includes a multi-head attention (MHA) module with
a LayerNorm (LN) layer both before and afterwards. The
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