

Flavor tagging performance in ATLAS and CMS

with an emphasis on HH and multi-Higgs searches

Nicole Hartman

nicole.hartman@tum.de obo ATLAS and CMS collaborations

COmprehensive Multi-boson Experiment-Theory Action workshop Izmir, Turkey 29 Feb 2024 COMETA

Motivation — why do we need b-tagging?

0.0005%

YY

History of b-tagging

ATLAS
TDR
1999[T]he $H \rightarrow bb$ decay mode is dominant ... [but] the extraction of a signal from $H \rightarrow bb$
decays in the WH channel will be very difficult at the LHC, even under the most
optimistic assumptions for the b-tagging performance
and calibration of the shape and
magnitude of the various background sources from the data itself.

Higgs discovery

The New Hork Times The New Hork Times **Physicists Find Elusive Particle Seen** Learning Programs as Key to Universe Share full article 🛱 Share full article 🔵 🏟 Scientists in Geneva on Wednesday applauded the discovery of a subatomic particle that looks like the Higgs boson. Pool photo by Denis Balibouse By John Markof Nov. 23, 2012 article By Dennis Overbye

July 4, 2012

ЛШ

What does a "b"-jet

b-jet properties:

- "Long" lifetime τ = 1.2 ps
- Massive B-hadron (≈ 5 GeV)
- ≈ 5 displaced tracks
- Harder fragmentation

baseline

Early Run 2 taggers

Key ídea: Hand engíneered algoríthms aggregated vía a híghlevel classífier

baseline

How do we aggregate this information?

What we have:

• Collection of tracks

• $X_i: i = \{1, \dots, n\}$ • Variable # of tracks

- Each track has features
 - $X_i \in \mathbb{R}^{m}$ E.g, impact parameters momenta, quality
- Jet has labels
 - *Y*: {b, c, light} or –
 - *Y*: {bb, cc, top, QCD}

baseline

<u>What we want:</u> $p(Y | X_1, ..., X_n)$

High dimensional problem $n \cdot m \sim \mathcal{O}(10^3)$

Flavour-tagging efficiency corrections for the 2019 ATLAS PFlow jet b-taggers with the full LHC Run II dataset

Flavour-tagging efficiency corrections for the 2019 ATLAS PFlow jet b-taggers with the full LHC Run II dataset

DeepJet

+Sets

+Sets

How did these b-tagging improvements improve our HH analyses?

Boosted analyses

HHighlighting CMS boosted H(bb)-tagger, ParticleNet

CMS Experiment at the LHC, CERN Data recorded: 2016-Aug-13 16:51:13.749568 GMT Run / Event / LS: 278803 / 465417690 / 259

ParticleNet

ParticleNet: <u>1902.08570</u> Huilin Qu's seminar <u>DP-2020/002</u>

ТШ

ParticleNet Analyses

ParticleNet Analyses

ТШ

 $X \rightarrow YH \rightarrow 4b$: <u>CMS-B2G-21-003</u>

ggF/VBF HH(4b): CMS-B2G-22-003

CMS,

ParticleNet Analyses

 $X \rightarrow YH \rightarrow 4b: CMS-B2G-21-003$

qqF/VBF HH(4b): CMS-B2G-22-003

CMS

GN1: architecture

formers

GN1: architecture

Transformers

GN1: architecture

 $\mathscr{L}_{tot} = \mathscr{L}_{jet} + \alpha \mathscr{L}_{trk} + \beta \mathscr{L}_{vtx}$

b-jet trigger <u>public plots</u> DP 2023/050

L. Cadamuro HH ws talk

For small-R jets.. in the trigger

Transformers

*Different denominators of these two plots... not apples-to-apples

b-jet trigger <u>public plots</u> DP 2023/050

L. Cadamuro HH ws talk

For small-R jets.. in the trigger

*Different denominators of these two plots... not apples-to-apples

GN2: $t\bar{t}$ eval

Transformer special type of GNN... but much easier to train!

Attention is All You Need: 1706.03762

22

GN2

ParticleTransformerAK4

ТЛП

Conclusion

Backup

1910.00012

Why so small?

What does it look like?

ATLAS golden channels

From ATLAS bb $\gamma\gamma$ HDBS-2018-34, bb $\tau\tau$ HDBS-2018-40, and 4b HDBS-2019-29 analyses.

Orders of magnitude higher background for 4b.

The baseline algorithms

Small R:ATLAS: MV2CMS: DeepCSV (?)

ТШП

Impact parameter

b-tagging

Key variable: impact parameter

Combined Secondary Vertex (CSVv2)

	Input variable	Run 1 CSV	CSVv2
Vertex based	SV 2D flight distance significance	Х	Х
	Number of SV		х
	Track $\eta_{\rm rel}$	х	х
	Corrected SV mass	x	х
	Number of tracks from SV	х	х
	SV energy ratio	X	x
Track based	$\Delta R(SV, jet)$		x
	3D IP significance of the first four tracks	x	x
	Track <i>p</i> _{T,rel}		x
	$\Delta R(\text{track}, \text{jet})$		x
	Track $p_{T,rel}$ ratio		x
	Track distance		x
	Track decay length		х
	Summed tracks <i>E</i> _T ratio		x
	$\Delta R(\text{summed tracks, jet})$		х
	First track 2D IP significance above c threshold		х
	Number of selected tracks		x
	Jet <i>p</i> _T		X
	Jet η		X
			T

Secondary vertices are characteristic for b-jets.

SV1 is based on single-secondary-vertex-finding algorithms searching for combinations of tracks originating from a common secondary vertex.

CERN 35

JetFitter

JetFitter follows cascade decays of B hadrons to charmed hadrons (D mesons) and tries to reconstruct both secondary and tertiary vertices secondary using an extended Kalman Filter for the search for a common axis connecting the three vertices.

Deep Neural Networks

Recurrent Neural Networks Convolutional Neural Networks

Small R:ATLAS: DL1r (PFlow)CMS: DeepJet

Large R:

- ATLAS: Xbb
 - DNN trained on leading 3 associated VR track jets w/ the dedicated DL1r training

• CMS: DeepAK8

DL1r improvement

DL1r pT dependence

GeV

Deep Sets

Network of networks!!

Deep Sets

Network of networks!!

Deep Sets

Network of networks!!

ATL-PHYS-PUB-2020-014

DIPS

4x speed-up in the training time!!!

Faster turn around time for physics optimizations

nominal: from before $(p_T > 1 \text{ GeV}, |d_0| < 1 \text{ mm}, |z_0 \sin \theta| < 1.5 \text{ mm})$ **loose:** poorer quality $(p_T > 1 \text{ GeV}, |d_0| < 1 \text{ mm}, |z_0 \sin \theta| < 1.5 \text{ mm})$ **Optimized DIPS:** loose selection + new inputs $(d_0, z_0 \sin \theta)$

DIPS in Data Acquisition

How do we decide which events to save?

ПΠ

DIPS in Data Acquisition

How do we decide which events to save?

In real time

DIPS is deciding which events to keep during data-taking happening now!!

b-jet trigger public plots

Background composition: Case study

Deep Jet inputs

650 inputs!

	Jet pT
Global variables	Jet η
	# charged pflow cand
	# neutral pflow cand
	# SV in jet
	# PV in event
Charged pflow variables [up to 25]	Δη(trk, jet)
	p⊤ ^{rel}
	$\vec{p}_{jet} \cdot \vec{p}_{trk}$
	$ \vec{p}_{jet} \cdot \vec{p}_{trk} / \vec{p}_{jet} $
	ΔR(trk,jet)
	Track 2d IP
	Track 2d IP significance
	Track 3d IP
	Track 3d IP significance
	Track distance to jet axis
	Fraction of jet momentum
	carried by the track
	$\Delta R(trk, closest SV)$
	is in PV fit (bool)
	PUPPI weight
	χ^2 of the trk fit
	track quality (category, int)

Charged (16 features) x25 1x1 conv. 64/32/32/8 RNN 150		b	
Neutral (6 features) x25 1x1 conv. 32/16/4 RNN 50 Dens	se es v1	bb lepb	
Secondary Vtx (12 features) x4 1x1 conv. 64/32/32/8 RNN 50 100 nod	es x7	C I	
Global variables (6 features)		g	

Deep Jet pT dependence

Deep Jet – where do the performance gains come from?

DeepJet: 1d-CNN+RNN "SOTA" Run 2 tagger

DeepCSV: Early Run 2 tagger (shallow DNN)

Deep CSV: Same inputs as CSV, but w/ the the DeepJet RNN architecture

DeepCSV with DeepJet input: Pass the extended inputs with the older architecture

∴ Need the fancier architecture to take advantage of the lowdimensional inputs

2008.10519

RNNs

+CNNs

Better

0.9

b-jet efficiency

Deep Jet compared to Deep Set

DeepJet: Default (R2 SOTA)

Impact in the 4b analysis

RNNs +CNNs

51

٦Π

Early Run 2 status

Emphasizing our main HH channels

Full Run 2 status

Also enabling **new physics** searches!!

HIG-20-004 HIG-20-010 HIG-21-010 HIG-20-005

b-Tagging with DeepJet

- Number of HH results with resolved b-jets
- Strongest observed HH cross-section constraints
- First $H^{\pm} \rightarrow HW^{\pm}$ results at LHC

RNNs

+CNNs

Graph Neural Networks

Impact on analysis strategy

When you put so much ML into the Higgs-jet identification the analysis strategy simplifies dramatically!

- Stat uncertainties now dominant, no need for a detailed background description, a simple QCD normalization is (often) sufficient.
- As the QCD bkg plummets, <u>more important to model the ttbar contribution separately</u> and constrain in dedicated CRs

Background estimation... boosted ParticleNet analyses

HY resonant

HH NR VBF

HH NR ggF

PhysLetB.2022.137392

Transfer factor regions (A & B)

 $145 < m_{\rm reg}^{\rm subl} < 200 \, {\rm GeV}$
Errors

Uncertainty source	$\Delta \mu$	
Statistical	+2.55	-2.30
Signal extraction	+2.32	-2.06
QCD multijet modeling	+1.12	-1.01
tt modeling	+0.28	-0.19
Systematic	+2.09	-0.89
Simulated sample size	+0.55	-0.55
$D_{b\overline{b}}$ selection	+0.72	-0.32
Jet energy and mass scale and resolution	+0.54	-0.39
Trigger selection	+0.26	-0.03
Luminosity measurement	+0.13	-0.04
Pileup modeling	+0.05	-0.06
Other experimental uncertainties	+0.05	-0.03
Theoretical	+0.63	-0.63
Total		-2.47

GN1 performance

ATL-PHYS-PUB-2022-027

GN1: Track classification QQRate Rate 1.2 1.2 ATLAS Simulation Preliminary **ATLAS** Simulation Preliminary $\sqrt{s} = 13 \text{ TeV}$ $\sqrt{s} = 13 \text{ TeV}$ Z' Ext, $250 < p_T < 5000$ GeV $t\bar{t}$, 20 < p_T < 250 GeV Positive Positive 1.0 1.0 True True 0.8 0.8 0.6 0.6 0.4 0.4 Heavy Flavour (AUC = 0.94) Heavy Flavour (AUC = 0.91) Primary & OtherSecondary (AUC = 0.92) Primary & OtherSecondary (AUC = 0.92) 0.2 0.2 Pileup (AUC = 0.96) Pileup (AUC = 0.97) Fake (AUC = 0.98)Fake (AUC = 0.98)0.0 0.0 -0.0 Trans-0.2 0.4 0.6 0.8 0.2 0.4 0.6 8.0 1.0 1.0 formers False Positive Rate False Positive Rate

ATL-PHYS-PUB-2022-027

GN1: track classification

ТП

formers

GN1: inputs

baseline

Jet Input	Description	
p_{T}	Jet transverse momentum	
η	Signed jet pseudorapidity	
Track Input	Description	
q/p	Track charge divided by momentum (measure of curvature)	
$\mathrm{d}\eta$	Pseudorapidity of the track, relative to the jet η	
$\mathrm{d}\phi$	Azimuthal angle of the track, relative to the jet ϕ	
d_0	Closest distance from the track to the PV in the longitudinal plane	
$z_0 \sin \theta$	Closest distance from the track to the PV in the transverse plane	
$\sigma(q/p)$	Uncertainty on q/p	
$\sigma(heta)$	Uncertainty on track polar angle θ	
$\sigma(\phi)$	Uncertainty on track azimuthal angle ϕ	
$s(d_0)$	Lifetime signed transverse IP significance	
$s(z_0)$	Lifetime signed longitudinal IP significance	
nPixHits	Number of pixel hits	
nSCTHits	Number of SCT hits	
nIBLHits	Number of IBL hits	
nBLHits	Number of B-layer hits	
nIBLShared	Number of shared IBL hits	
nIBLSplit	Number of split IBL hits	
nPixShared	Number of shared pixel hits	
nPixSplit	Number of split pixel hits	
nSCTShared	Number of shared SCT hits	
nPixHoles	Number of pixel holes	
nSCTHoles	Number of SCT holes	
	пп	

Transformers

GN1: auxiliary tasks

ATL-PHYS-PUB-2022-027

The composition of triggers making up the main physics stream

Tau trig public plots

ATLAS Simulation

Preliminary

√*s* = 13.6 TeV

 $\kappa_{\lambda} = 1, bb\tau_{h}\tau_{h}$

$HH \rightarrow bb\tau_{had}\tau_{had}$

900 1000 $m_{HH}^{Truth} \left[GeV \right]$

700

800

CMS: bbtautau trigger

ТШ

Transformers

ATLAS: GN2 CMS: ParticleTransformer (ParT)

💿 You

What would be useful for experimentalists and theorists to discuss at a workshop for "Combined Experiment Theory Action"

ChatGPT

A workshop on "Combined Experiment Theory Action" would likely focus on fostering collaboration and synergy between experimentalists and theorists in the field of particle physics. Here are some topics that could be useful for discussion:

- Current Challenges and Open Questions: Discussing the current challenges and open questions in particle physics that require a combined effort from experimentalists and theorists to address. This could include topics such as the nature of dark matter, the properties of neutrinos, the search for new particles beyond the Standard Model, and the origin of matter-antimatter asymmetry.
- 2. **Experimental Constraints and Theoretical Frameworks:** Exploring how experimental data can constrain theoretical models and vice versa. This involves understanding the limitations of experimental measurements and how theoretical predictions can guide experimental searches.
- Data Analysis Techniques: Sharing best practices in data analysis techniques used by both experimentalists and theorists. This could include statistical methods, machine learning approaches, and simulation techniques.
- 4. Model Building and Phenomenology: Discussing how theoretical models are constructed and how they can be tested against experimental data. This involves considering both established frameworks like the Standard Model and speculative theories beyond it.
- Collider and Non-collider Experiments: Highlighting the different types of experiments in particle physics, including collider experiments like those at the Large Hadron Collider (LHC) and non-collider experiments such as neutrino experiments and dark matter searches.
- Computational Tools and Resources: Sharing computational tools and resources that are useful for both experimentalists and theorists. This could include software packages for Monte Carlo simulations, theoretical calculations, and data analysis.
- Interdisciplinary Collaborations: Exploring opportunities for interdisciplinary collaborations with researchers from other fields, such as astrophysics, cosmology, and condensed matter physics. These collaborations can provide new insights and perspectives on particle physics phenomena.
- 8. **Education and Training**: Discussing strategies for educating and training the next generation of particle physicists, with an emphasis on interdisciplinary skills and collaboration.

By discussing these topics and fostering collaboration between experimentalists and theorists, a workshop on "Combined Experiment Theory Action" can help advance our understanding of fundamental physics and address some of the most pressing questions in the field.

FTAG-2023-01

Transformers

Particle Transformer

Particle Attention Right: Fig 3b from 2202.03772

Attention Head

(b) Particle Attention Block

(b) Particle Attention Block

Class Attention $\mathbf{B}_{\oplus}^{\mathbf{x}^{t}}$

Em

Х

Linear • Attention between the target classes and the jet latent space SoftMax Conceptually similar to Slot attention Linear \oplus • 2006.15055 Mask • Used for global PFlow studies, Scale 2212.01328 For Xbb tagging, expected not as big of a $\mathcal{Q} \uparrow \text{diff} ence as the particle attention block}$ Linear Linear Linear LN

 \mathbf{x}^{l-1}

(c) Class Attention Block