

VVh/Vhh in ATLAS and CMS

Rare multi-boson production at the LHC and beyond

Alessandra Cappati (LLR)* from zoom, Matteo Presilla (KIT) 1st COMETA General Meeting, Izmir

hh production modes

- With full Run 2, possible to target also **subdominant** production modes
- \rightarrow Diagrams also involve a different couplings

Exp. observation very hard, but small modifications to VVhh would lead to big changes in σ

hh beyond the SM

BSM processes can modify cross-section and kinematic properties

BSM effects parametrized as **multiplicative modifier** of the SM parameter λ : \mathbf{k}_{λ}

→ For **purely scalar operators**, description in terms of Wilson coefficients or modifiers are **equivalent**

For VVhh BSM effects also parametrized as modifier of the SM coupling: k_{2V}

 \rightarrow Not equivalent to the SMEFT approach (only true for some models)

To combine with other anomalous quartic couplings, need proper EFT parametrization \rightarrow JHEP 09 (2022) 038

more on this later

Outline:

- Vhh production: non-resonant & resonant
- Anomalous VVh couplings
- VBF-hh dim-8 EFT, and new signatures

Vhh production: non-resonant production. (ATLAS: EPJC 83(2023)519, CMS-PAS-HIG-22-006)

Vhh production

Complimentary to ggF and VBF channels, with cleaner signal when choosing V-leptonic decay

Constructive interference yields an increasing Vhh cross section as k_{λ} increases (0< k_{λ} <4), while ggF and VBF channels are near their minimum

Vhh search in CMS

Higgs self-coupling

VVhh coupling

VVh coupling

- Focus on hh → 4b final states (~34%) with both leptonic and hadronic decays of the V boson
- Nearly all V-decay channels: 2L, 1L, MET, Fully hadronic
- Very low sensitivity to SM process: only 110 events would have been produced without any selection applied!

Vhh search in CMS

- → Striking difference of some kinematics distribution when the coupling constants vary
- → Utilizing this feature with BDTs; we can create some regions that are sensitive to high k_λ(k_{VV}) coupling

- Focus on hh → 4b final states
 (~34%) with both leptonic and
 hadronic decays of the V boson
- Nearly all V-decay channels: 2L, 1L, MET, Fully hadronic
- Very low sensitivity to SM process: only 110 events would have been produced without any selection applied!

non-resonant Vhh results

- Unique feature to decompose k_{WW} and k_{ZZ} couplings separately
- Constraints similar for CMS and ATLAS

$-12.2 (-7.2) \le \kappa_{ov} \le 13.5 (8.9)$	
-14.0 (-10.2) < κ _{ww} < 15.4 (11.6)	-37.7 (-30.1) < κ _λ < 37.2 (28.9)
-17.4 (-10.5) < κ _{ZZ} < 18.5 (11.6)	$\mu^{VHH} \equiv \sigma_{VHH} / \sigma_{VHH}^{SM} < 294 $ (124)

Vhh cross-section upper limits

Vhh production: resonant production. (ATLAS: EPJC 83(2023)519)

Resonant mediators

- Masses from 260 to 1000 GeV
- Narrow resonance (~3%)
- EW singlet/typell 2HDM

typical 2HDM signature

neutral heavy pseudoscalar

- A is CP-odd, with widths up to 20% of its mass
- A mass range 360-800 GeV

Vhh resonant search

- → Similar strategy to the non-resonant search
- → signal m_{hh} are expected to peak at ~ m_{H}
- → m_{hh} resolution improved by constraining the measured masses of the two Higgs boson candidates to the exp value

- → Significant excesses at (m_A,m_H) = (420,320)GeV with a local (global) significance of 3.8σ (2.8σ) in the LW scenario
- → Competitive upper limits on models parameters

Wh: anomalous couplings.

(<u>Phys. Rev. D 104, 052004</u>, <u>Phys. Rev. D 108, 032013</u>, <u>CMS-PAS-HIG-22-008</u>)

AC formalism

· considerations of symmetry and gauge invariance require:

 $a_1^{Z\gamma} = a_1^{\gamma\gamma} = a_1^{gg} = 0, \, \kappa_1^{ZZ} = \kappa_2^{ZZ}, \, \kappa_1^{\gamma\gamma} = \kappa_2^{\gamma\gamma} = 0, \, \kappa_1^{gg} = \kappa_2^{gg} = 0$

For the V=W,Z we are left with: $a_1^{WW,ZZ} = CP$ -even couplings (SM-like) $a_2^{WW,ZZ}$, $\kappa_1^{WW,ZZ}/(\Lambda_1^{WW,ZZ})^2$, $\kappa_2^{ZY}/(\Lambda_1^{ZY})^2 = CP$ -even anomalous couplings $a_3^{WW,ZZ} = CP$ -odd coupling

 $a_1^{ZZ} = a_1^{WW}$ due to custodial symmetry We consider two approaches to relate ZZ and WW couplings: Approach 1: $a_i^{ZZ} = a_i^{WW}$, $\kappa_1^{ZZ}/(\Lambda_1^{ZZ})^2 = \kappa_1^{WW}/(\Lambda_1^{WW})^2$ Approach 2: $a_3^{WW} = \cos^2\theta_W a_3^{ZZ}$ Are there any anomalous interactions between a Higgs boson and two gauge bosons? Current precision allows small anomalous CP-even and/or CP-odd couplings.

Convenient to parameterise ACs in terms of effective cross-sections (most of the uncertainties cancel in the ratio):

$$f_{a_i} = \frac{\mid a_i \mid^2 \sigma_i}{\sum_{j=1,2,3...} \mid a_j \mid^2 \sigma_j} \operatorname{sign}\left(\frac{a_i}{a_1}\right)$$

15

How do we measure AC?

Different approaches employed to achieve good AC sensitivity:

- → "Optimal observables" approach: reduce phase space dimensionality by combining observables
- → Matrix element methods (MEM): build Neymann-Pearson-like discriminants based on parton-level information
- → Machine learning techniques: build NN classifiers to exploit correlations and boost the sensitivity

A recent CMS example

HWW analysis

From the 5 observables (Ω) that fully describe the topology (3 angles+2 four-momenta)

MELA reduction to 3 types of discriminant:

ggH signal vs VBF/VH signal =>
$$\mathcal{D}_{g}$$

$$\mathcal{D}_{\mathrm{sig}} = rac{\mathcal{P}_{\mathrm{sig}}(\vec{\Omega})}{\mathcal{P}_{\mathrm{sig}}(\vec{\Omega}) + \mathcal{P}_{\mathrm{bkg}}(\vec{\Omega})}$$

SM vs BSM =>
$$\mathcal{D}_{BSM} = \frac{\mathcal{P}_{BSM}(\vec{\Omega})}{\mathcal{P}_{BSM}(\vec{\Omega}) + \mathcal{P}_{SM}(\vec{\Omega})}$$

$$\mathcal{D}_{\text{int}} = \frac{\mathcal{P}_{\text{SM}-\text{BSM}}^{\text{int}}(\vec{\Omega})}{\mathcal{P}_{\text{SM}}(\vec{\Omega}) + \mathcal{P}_{\text{BSM}}(\vec{\Omega})}$$

- ★ \mathscr{P}_i is the probability for the process (i=SM, BSM).
- ★ *P*_{SM-BSM} is the interference part of the probability distribution with a mixture of SM and BSM.

Results:

EFT Higgs basis

$\begin{array}{cccc} \delta c_z & -0.06^{+0.09}_{-0.16} & 0.00^{+0.08}_{-0.10} \\ c_{z \Box} & 0.01^{+0.02}_{-0.02} & 0.00^{+0.02}_{-0.02} \end{array}$	Coupling	Coupling Observed Expe	
$\begin{array}{cccc} c_{zz} & 0.03^{+0.30}_{-0.52} & 0.00^{+0.23}_{-0.29} \\ \tilde{c}_{zz} & -0.17^{+0.42}_{-0.29} & 0.00^{+0.29}_{-0.29} \end{array}$	$\frac{\delta c_z}{\delta c_z}$ $\frac{\delta c_z}{\delta c_z}$ $\frac{\delta c_z}{\delta c_z}$	$-0.06^{+0.09}_{-0.16}$ $0.01^{+0.02}_{-0.06}$ $0.03^{+0.30}_{-0.52}$ $-0.17^{+0.42}_{-0.20}$	$\begin{array}{c} 1\\ 0.00 \substack{+0.08\\-0.10}\\ 0.00 \substack{+0.02\\-0.02}\\ 0.00 \substack{+0.23\\-0.29}\\ 0.00 \substack{+0.29\\-0.22}\end{array}$

SMEFT Warsaw basis

Coupling	Observed	Expected	
	. 1. 10	. 1	
$c_{\mathrm{H}\square}$	$-0.76^{+1.43}_{-3.43}$	$0.0^{+1.37}_{-1.84}$	
$c_{ m HD}$	$-0.12\substack{+0.93 \\ -0.32}$	$0.0\substack{+0.43 \\ -0.30}$	
$c_{ m HW}$	$0.08\substack{+0.43 \\ -0.87}$	$0.0\substack{+0.37 \\ -0.48}$	
$c_{\rm HWB}$	$0.17\substack{+0.88 \\ -1.79}$	$0.0\substack{+0.77 \\ -0.96}$	
$c_{ m HB}$	$0.03\substack{+0.13 \\ -0.26}$	$0.0\substack{+0.11 \\ -0.14}$	
$c_{\mathrm{H} ilde{W}}$	$-0.26\substack{+0.67\\-0.50}$	$0.0\substack{+0.48\\-0.52}$	
c _{HŴB}	$-0.54^{+1.37}_{-1.03}$	$0.0\substack{+0.99 \\ -1.07}$	
c _{HB̃}	$-0.08\substack{+0.20\\-0.15}$	$0.0\substack{+0.15 \\ -0.16}$	

All f_{ai} consistent with 0, the SM value. Limits translated to SMEFT in two bases.

VBF-hh dim-8 EFT & new signatures

(R. Covarelli, A. Cappati, P. Torrielli, M. Zaro - JHEP09 (2022) 038)

A different proposal from VVhh phenomenology

- Paper investigates VVhh interactions
- In EFT terms, only investigated in (gauge) VBS or triboson processes

In this work:

- Reinterpretation of VBF hh experimental results in terms of dim-8 EFT operators, sensitive to VVHH interactions
- Focus on genuine SMEFT aQGC-generating operators (dimension 8 Eboli's basis)
- Unitarity constraints considered
 - dedicated technique adopted

 \rightarrow mass-dependent constraints

RC, A. Cappati, P. Torrielli, M. Zaro JHEP09 (2022) 038

Simulation setup

- Simplified phenomenology analysis
- Generator: MadGraph5_aMC@NLO
- Processes:
 - VBF-hh
 - \circ VBS (W[±]W[±], W[±]Z, W⁺W⁻) (for comparison)
- Typical experimental selections applied on tagging jets
- Observable used to estimate the EFT sensitivity:
 - $\sigma[\mathbf{m}_{\min}, \mathbf{m}_{\max}]$ (integrated cross section in mass interval)
 - m = invariant mass of the di-boson states produced

■ m_{max} = various values between 1.1 TeV and √s (the latter corresponding to no unitarity bound)

Reproducing CMS VBS results

- Managed to reproduce CMS VBS results (w/o unitarity bounds) with simplified observable
- Also filled in missing results

	VBS $W^{\pm}W^{\pm} \rightarrow 2\ell 2\nu$		VBS $W^{\pm}Z \rightarrow 3\ell\nu$		VBS $W^{\pm}V$	semileptonic
Coeff.	CMS exp.	estimated	CMS exp.	estimated	CMS exp.	estimated
$f_{ m M0}/\Lambda^4$	[-3.7,3.8]	[-3.9,3.7]	[-7.6,7.6]	input	[-1.0,1.0]	[-1.0,1.0]
$f_{ m M1}/\Lambda^4$	[-5.4,5.8]	input	[-11,11]	[-11,11]	[-3.0, 3.0]	[-3.1, 3.1]
$f_{ m M2}/\Lambda^4$	/	/	_	[-13, 13]	-	[-1.5, 1.5]
$f_{ m M3}/\Lambda^4$	/	/	-	[-19, 19]	-	[-5.5, 5.5]
$f_{ m M4}/\Lambda^4$	/	/	. <u> </u>	[-5.9, 5.9]		[-3.1, 3.1]
$f_{ m M5}/\Lambda^4$	/	/	-	[-8.3, 8, 3]	—	[-4.5, 4.5]
$f_{ m M7}/\Lambda^4$	[-8.3, 8.1]	[-8.5, 8.0]	[-14, 14]	[-14, 14]	[-5.1, 5.1]	input
$f_{ m S0}/\Lambda^4$	[-6.0, 6.2]	[-6.1,6.2]	[-24, 24]	[-25, 26]	[-4.2, 4.2]	[-6.7, 6.8]
$f_{ m S1}/\Lambda^4$	[-18, 19]	[-18, 19]	[-38,39]	[-38,39]	[-5.2, 5.2]	[-8.3, 8.4]
$f_{ m S2}/\Lambda^4$	-	[-18,19]	—	[-25, 26]	-	[-8.4, 8.5]

Implementation of unitarity bounds

 Evaluate σ[m_{min}, m_{max}] for several m_{max}
 For each σ, obtain m_{max}-dependent limits on operator coefficients with same procedure used for validation

Coeff.	VBS $W^{\pm}W^{\pm}$	VBS $W^{\pm}Z$	VBS $W^{\pm}V$ semilep.
$f_{ m M0}/\Lambda^4$	/	/	[-3.3, 3.5]
$f_{ m M1}/\Lambda^4$	[-13, 17]	[-67, 71]	[-7.4, 7.6]
$f_{\mathrm{M2}}/\Lambda^4$	/	/	[-9.1, 9.0]
$f_{ m M3}/\Lambda^4$	/	/	[-32, 30]
$f_{ m M4}/\Lambda^4$	/	[-36, 36]	[-8.6, 8.7]
$f_{ m M5}/\Lambda^4$	/	[-29, 29]	[-10, 10]
$f_{ m M7}/\Lambda^4$	[-21, 18]	[-59, 57]	[-11,11]
$f_{ m S0}/\Lambda^4$	[-17,20]	/	[-8.5, 9.5]
$f_{ m S1}/\Lambda^4$	/	/	/
$f_{ m S2}/\Lambda^4$	/	[-25, 26]	[-21, 25]

- Limits obtained w/ unitarity much less stringent than those w/o
- If curves do not cross, available data are not enough to set more stringent limits than those imposed by unitarity

VBF-hh limit setting

Similar to VBS, but experimental results in terms of coupling modifier k_{2V}

- 1. Consider public VBF hh \rightarrow 4b 95% CL limit (CMS only) on k_{2V}
- 2. Use a VBF-hh simulation as function of k_{2V} to fit a parabola and obtain limit on σ
- 3. From limit on σ , extract limits on corresponding dim-8 Wilson coefficient from simulation

Validation: use limits on f_x as input and re-produce CMS limits on k_{2V}

VBF-hh results

- VBF-hh estimated limits supersede those obtained with VBS for f_{M0} , f_{M2} , f_{M3}
- Unitarity boundaries added as described for VBS

	VBS $W^{\pm}V$ semileptonic		$VBF HH \rightarrow b\overline{b}b\overline{b}$	
Coeff.	no unitarity	w/ unitarity	no unitarity	w/ unitarity
$f_{ m M0}/\Lambda^4$	[-1.0,1.0]	[-3.3,3.5]	[-0.95, 0.95]	[-3.3, 3.3]
$f_{ m M1}/\Lambda^4$	[-3.1, 3.1]	[-7.4, 7.6]	[-3.8, 3.8]	[-13, 14]
$f_{ m M2}/\Lambda^4$	[-1.5, 1.5]	[-9.1, 9.0]	[-1.3, 1.3]	[-7.6, 7.3]
$f_{ m M3}/\Lambda^4$	[-5.5, 5.5]	[-32, 30]	[-5.2, 5.3]	[-29, 30]
$f_{ m M4}/\Lambda^4$	[-3.1, 3.1]	[-8.6, 8.7]	[-4.0, 4.0]	[-14, 14]
$f_{ m M5}/\Lambda^4$	[-4.5, 4.5]	[-10, 10]	[-7.1, 7.1]	[-26, 26]
$f_{ m M7}/\Lambda^4$	[-5.1, 5.1]	[-11,11]	[-7.6, 7.6]	[-27, 27]
$f_{ m S0}/\Lambda^4$	[-4.2,4.2]	[-8.5,9.5]	[-30,29]	/
$f_{ m S1}/\Lambda^4$	[-5.2, 5.2]	/	[-11,10]	/
$f_{\mathrm{S2}}/\Lambda^4$	-	[-21, 25]	[-17, 16]	/

Perspectives for HL-LHC

- Limits w/o unitarity obtained rescaling the excluded σ by $L^{-\frac{1}{2}}$ ($L = 3 \text{ ab}^{-1}$, 13 TeV)
- Limits w/ unitarity present significant additional gain since m_{max} moves to larger values, allowing inclusion of more data in the sensitivity estimate
 - \rightarrow limits improve by factor 4-5
 - \rightarrow first physical limit on f_{S1}

	VBS $W^{\pm}V$ semileptonic		$VBF HH \rightarrow b\overline{b}b\overline{b}$	
Coeff.	no unitarity	w/ unitarity	no unitarity	w/ unitarity
$f_{ m M0}/\Lambda^4$	[-0.47,0.47]	[-0.96,1.02]	[-0.43,0.43]	[-0.90,0.87]
$f_{\rm M1}/\Lambda^4$	[-1.5, 1.5]	[-2.3, 2.4]	[-1.7, 1.7]	[-3.5, 3.5]
$f_{ m M2}/\Lambda^4$	[-0.69, 0.68]	[-2.1, 2.1]	[-0.62, 0.61]	[-1.7, 1.7]
$f_{ m M3}/\Lambda^4$	[-2.5, 2.4]	[-6.8, 6.3]	[-2.4, 2.4]	[-6.5, 6.6]
$f_{ m M4}/\Lambda^4$	[-1.4, 1.4]	[-2.4, 2.5]	[-1.8,1.8]	[-3.9, 4.0]
$f_{ m M5}/\Lambda^4$	[-2.0, 2.0]	[-3.0, 3.1]	[-3.2, 3.2]	[-6.9, 7.0]
$f_{ m M7}/\Lambda^4$	[-2.4, 2.4]	[-3.5, 3.5]	[-3.5, 3.5]	[-7.1,7.1]
$f_{ m S0}/\Lambda^4$	[-1.8, 2.0]	[-2.6, 3.3]	[-14,13]	/
$f_{ m S1}/\Lambda^4$	[-2.4, 2.4]	[-5.8, 6.1]	[-5.1, 4.5]	/
$f_{ m S2}/\Lambda^4$	[-2.3, 2.4]	[-4.8, 5.2]	[-8.1,7.1]	/

New final states

$gg{\rightarrow}VVH$ and $qq{\rightarrow}VHH$

 \rightarrow for both, V=Z, since final states with W bosons would suffer from large top-induced bkg and would require a real experimental analysis

1. gg→VVH

Considering EFT effects with similar magnitude as those induced in VBS and VBF HH, the cross-section remains too small, even at HL-LHC

2. **qq**→**VHH**

Performed simple analysis (since no available exp. results at the time)

- Assume only 1 SM bkg (Z+4 b jets)
- Enhance signal by requiring m_{bb} close to m_{H} for b jet pair candidates
- Estimate $\sigma[m_{min}, m_{max}]$ for signal+EFT and bkg
- Compute S and B with LHC Run 2 luminosity, and limits with Feldman-Cousins approach

Sensitivity smaller than other final states

But promising results with HL-LHC prospects: limits w/ unitarity on some M-type operators!

Summary.

→ Rare Vhh production

- non-resonant => SM and k-framework
- resonant => sensitivity to specific BSM scenarios
- → Search for anomalous effects, in the tensor structure of the H interactions with electroweak bosons (HVV):

- \rightarrow Novel approach to aQGC from VVhh
 - competitive to traditional VBS probes
 - new possibile signatures to explore

BACKUP

Recent ATLAS and CMS results

recent Vhh measurements

EPJC83(2023)519 Search for Higgs boson pair production in association with a vector boson.

HIG-22-006 Search for vector-boson associated di-Higgs production with HH->4b and with leptonic vector boson decays.

Anomalous Couplings in VVh

HIG-22-008 Anomalous Higgs couplings in HWW.

PRD 108 (2023) 032013 AC to vector bosons/fermions in production in h->TT.

PRD 99, 112003 Off-shell Higgs production and AC in four-lepton final state.