

Precision Physics in ZH/ZZ/HH

Marco Vitti (Karlsruhe Institute of Technology, TTP and IAP) 1st COMETA General Meeting, Izmir, Feb 29 2024

Recent developments in SM predictions

Emphasis on fixed-order

Massive loops in gg-initiated processes

See

https://indico.cern.ch/ event/1360356/

for dedicated discussions

Topical on-line WG1 meeting - 2 hours for 2 bosons Wednesday Jan 17, 2024, 2:30 PM → 5:00 PM Europe/Rome Description Topical meeting of the COMETA WG1 (theoretical understanding) on diboson production (VV. VH. HH) Zoom recording Videoconference Topical on-line WG1 meeting - 2 hours for 2 bosons õ 2:30 PM → 2:40 PM Introduction () 10m Speakers: Giovanni Pelliccioli (Max-Planck-Institut für Physik), Ramona Groeber (Università di Padova and INFN, Sezione di Padova) p_cometa_wg1_1s... 2:40 PM → 3:10 PM VV () 30m Speaker: Marius Wiesemann (Max Planck Institute for Physics) Wiesemann_COME.. 3:10 PM → 3:40 PM VLVL () 30m Speaker: Rene Poncelet (IFJ PAN Krakow) 2024.01.17-COMET... 3:40 PM → 4:10 PM VH **③** 30m Speaker: Stephen Philip Jones (University of Durham (GB)) talk_cometa_sj.pdf 4:10 PM → 4:40 PM HH () 30m Speaker: Michael Spira (Paul Scherrer Institute (CH)) 🕅 spira.pdf 4:40 PM → 5:00 PM Discussion 3 20m

ΖH

VH Production at the LHC

$pp \rightarrow VH$ is the most sensitive process to $H \rightarrow b\overline{b}$ [Atlas-2007.02873, CMS-1808.08242]

VH Production at the LHC

$pp \rightarrow VH$ is the most sensitive process to $H \rightarrow b\overline{b}$ [Atlas-2007.02873, CMS-1808.08242]

• Work in progress on $H \rightarrow c\overline{c}$ [ATLAS-2201.11428, CMS-2205.0555]

Probe of VVH coupling

Larger scale uncertainties in ZH

	\sqrt{s} [TeV]	$\sigma_{ m NNLO~QCD\otimes NLO~EW}$ [pb]	$\Delta_{\text{scale}} [\%]$	$\Delta_{\mathrm{PDF}\oplus\alpha_{\mathrm{s}}}$ [%]
	13	1.358	$^{+0.51}_{-0.51}$	1.35
$pp \to WH$	14	1.498	$^{+0.51}_{-0.51}$	1.35
	27	3.397	$+0.29 \\ -0.72$	1.37
	\sqrt{s} [TeV]	$\sigma_{\rm NNLO \ OCD \otimes NLO \ EW}$ [pb]	Δ_{scale} [%]	$\Delta_{\mathrm{PDF}\oplus \alpha_{*}}$ [%]
	V E 3	IIIIBO QODOIIBO BII 4	Secure	i ⊇i ⊕as
	13	0.880	$+3.50 \\ -2.68$	1.65
$pp \rightarrow ZH$	13 14	0.880 0.981	$+3.50 \\ -2.68 \\ +3.61 \\ -2.94$	1.65 1.90
$pp \rightarrow ZH$	13 14 27	0.880 0.981 2.463	$\begin{array}{r} +3.50 \\ -2.68 \\ +3.61 \\ -2.94 \\ +5.42 \\ -4.00 \end{array}$	1.65 1.90 2.24

[Cepeda et al. - 1902.00134]

Theoretical Predictions for $pp \rightarrow ZH$

LO: quark-initiated tree-level contribution (purely EW)

Karlsruhe Institute of Technology

QCD effects: mainly due to Drell-Yan (DY) production followed by $Z^* \rightarrow ZH$ decay

Drell-Yan: Known through N3LO (+30% wrt LO)

[Han, Willenbrock ('91) ; Hamberg, van Neerven, Matsuura ('92) ; Brein, Djouadi, Harlander – 0307206; Baglio, Duhr, Mistlberger, Szafron - 2209.06138]

Non Drell-Yan - quark-initiated O(1%) wrt LO

[Brein, Harlander, Wiesemann, Zirke - 1111.0761]

Non Drell-Yan - gluon-initiated

EW corrections: through NLO (-(5-10%) wrt LO)

[Ciccolini, Dittmaier, Krämer - 0306234]

$gg \rightarrow ZH @ NLO QCD$

Main problem in the virtual NLO calculation Multi-scale (m_Z, m_H, m_t, s, t) two-loop box integrals No full analytic results

Three (almost) independent calculations in agreement

- Small-mass expansion $m_Z, m_H \rightarrow 0$ [Wang, Xu, Xu, Yang 2107.08206] Elliptic integrals evaluated numerically
- Sector decomposition \bigoplus High-Energy expansion $m_Z^2, m_H^2 \ll m_t^2 \ll \hat{s}, \hat{t}$

[Chen et al. - 2011.12325; Davies et al. - 2011.12314; Chen, et al. - 2204.05225;]

pT expansion \bigoplus High-Energy expansion $m_Z^2, m_H^2, p_T^2 \ll m_t^2, \hat{s}$ $m_Z^2, m_H^2 \ll m_t^2 \ll \hat{s}, \hat{t}$

[Alasfar et al. - 2103.06225; Bellafronte et al. - 2202.12157; Degrassi, Gröber, MV, Zhao - 2205.02769]

$gg \rightarrow ZH @ NLO QCD$

Inclusive cross section $\sqrt{s} = 13 \text{TeV}$ $\mu_r = \mu_f = M_{ZH}/2$

Top-mass scheme	LO [fb]	$\sigma_{LO}/\sigma_{LO}^{OS}$	NLO [fb]	$\sigma_{NLO}/\sigma_{NLO}^{OS}$	$K = \sigma_{NLO} / \sigma_{LO}$
On-Shell	$64.01^{+27.2\%}_{-20.3\%}$		$118.6^{+16.7\%}_{-14.1\%}$		1.85
$\overline{\mathrm{MS}}, \mu_t = M_{ZH}/4$	$59.40^{+27.1\%}_{-20.2\%}$	0.928	$113.3^{+17.4\%}_{-14.5\%}$	0.955	1.91
$\overline{\mathrm{MS}}, \mu_t = m_t^{\overline{\mathrm{MS}}}(m_t^{\overline{\mathrm{MS}}})$	$57.95^{+26.9\%}_{-20.1\%}$	0.905	$111.7^{+17.7\%}_{-14.6\%}$	0.942	1.93
$\overline{\mathrm{MS}}, \mu_t = M_{ZH}/2$	$54.22^{+26.8\%}_{-20.0\%}$	0.847	$107.9^{+18.4\%}_{-15.0\%}$	0.910	1.99
$\overline{\mathrm{MS}}, \mu_t = M_{ZH}$	$49.23^{+26.6\%}_{-19.9\%}$	0.769	$103.3^{+19.6\%}_{-15.6\%}$	0.871	2.10

NLO corrections are the same size as LO $(K\sim 2)$

Scale uncertainties reduced by 30% wrt LO

Invariant-mass distribution

K-factor is not flat over M_{ZH} range
 Large NLO enhancement in the high-energy tail (M_{ZH} > 1 TeV)

$gg \rightarrow ZH @ NLO QCD$

$\sqrt{s} = 13 \text{TeV}$ Inclusive cross section $\mu_r = \mu_f = M_{ZH}/2$

Top-mass scheme	LO [fb]	$\sigma_{LO}/\sigma_{LO}^{OS}$	NLO [fb]	$\sigma_{NLO}/\sigma_{NLO}^{OS}$	$K\!=\!\sigma_{NLO}/\sigma_{LO}$
On-Shell	$64.01^{+27.2\%}_{-20.3\%}$		$118.6^{+16.7\%}_{-14.1\%}$		1.85
$\overline{\mathrm{MS}}, \mu_t = M_{ZH}/4$	$59.40^{+27.1\%}_{-20.2\%}$	0.928	$113.3^{+17.4\%}_{-14.5\%}$	0.955	1.91
$\overline{\mathrm{MS}}, \mu_t = m_t^{\overline{\mathrm{MS}}}(m_t^{\overline{\mathrm{MS}}})$	$57.95^{+26.9\%}_{-20.1\%}$	0.905	$111.7^{+17.7\%}_{-14.6\%}$	0.942	1.93
$\overline{\mathrm{MS}}, \mu_t = M_{ZH}/2$	$54.22^{+26.8\%}_{-20.0\%}$	0.847	$107.9^{+18.4\%}_{-15.0\%}$	0.910	1.99
$\overline{\mathrm{MS}}, \mu_t = M_{ZH}$	$49.23^{+26.6\%}_{-19.9\%}$	0.769	$103.3^{+19.6\%}_{-15.6\%}$	0.871	2.10

NLO corrections are the same size as LO $(K\sim 2)$

Scale uncertainties reduced by 30% wrt LO

Invariant-mass distribution

High-Energy Tails – pT Distributions

Very large (~20) NLO corrections for $p_{T,H} > 400 \, \text{GeV}$

Still K-factor of ~5 after pT cuts

The pT cuts remove 2 → 3 configurations with a hard jet and a soft Z

These are very likely in the high-energy region

[Chen, Davies, Heinrich, Jones, Kerner, Mishima, Schlenk, Steinhauser - 2204.05225]

Top Mass Scheme Uncertainty

Envelope of deviations of MS schemes wrt OS result Same method already used for HH production [Baglio et al. - 1811.05692, 2003.03227]

Uncertainty sensitive to the binning of top-pair threshold peak

Avoid overestimate of uncertainty

Bin Width [GeV]	LO	NLO
1	$64.01^{+15.6\%}_{-35.9\%}$	$118.6^{+17.2\%}_{-27.0\%}$
5	$64.01^{+15.3\%}_{-35.6\%}$	$118.6^{+14.7\%}_{-24.9\%}$
25	$64.01^{+14.0\%}_{-33.1\%}$	$118.6^{+10.9\%}_{-20.8\%}$
100	$64.01^{+2.0\%}_{-25.3\%}$	$118.6^{+0.6\%}_{-13.7\%}$
∞	$64.01^{+0\%}_{-23.1\%}$	$118.6^{+0\%}_{-12.9\%}$

- O

Top-mass uncertainty ~ scale uncertainty

ΖZ

$pp \rightarrow ZZ$ at the LHC

Probe of EW theory: VVV couplings, Higgs production, polarisations measurements...

Indirect access to Higgs width from off-shell measurements

[Kauer, Passarino – 1206.4803] [Caola, Melnikov – 1307.4935] [Campbell. Ellis, Williams - 1311.3589]

QCD: known through NNLO

[Cascioli et al. - 1405.2219; Heinrich et al. - 1710.06294; Gehrmann et al. - 1404.4853; Caola et al. - 1408.6409; Gehrmann et al. - 1503.04812; Grazzini et al. - 1507.06257; Kallweit, Wiesemann - 1806.05941]

EW: known through NLO [Bierweiler et al. – 1305.5402; Baglio, Ninh, Weber – 1307.4331; Chiesa et al. - 2005.12146]

$pp \rightarrow ZZ$ at the LHC

Probe of EW theory: VVV couplings, Higgs production, polarisations measurements...

Indirect access to Higgs width from off-shell measurements

[Kauer, Passarino – 1206.4803] [Caola, Melnikov – 1307.4935] [Campbell. Ellis, Williams - 1311.3589]

Higgs-mediated: NLO QCD

[Spira et al. - 9504378 ; Aglietti et al. - 0611266 ; Harlander, Kant - 0509189; Anastasiou et al. - 0611236]

Continuum ZZ production: NLO QCD (light quark) [von Manteuffel, Tancredi – 1503.08835; Caola et al. - 1509.06734]

Impact of $gg \rightarrow ZZ$

[Grazzini, Kallweit, Wiesemann, Yook - 1811.09593]

	\sqrt{s}	$8{ m TeV}$	$13\mathrm{TeV}$	$8{ m TeV}$	$13{ m TeV}$
_		σ[fb]	$\sigma/\sigma_{ m NI}$	$_{\rm LO} - 1$
Γ	LO	$8.1881(8)^{+2.4\%}_{-3.2\%}$	$13.933(1)^{+5.5\%}_{-6.4\%}$	-27.5%	-29.8%
	NLO	$11.2958(4)^{+2.5\%}_{-2.0\%}$	$19.8454(7)^{+2.5\%}_{-2.1\%}$	0%	0%
	$q\bar{q}$ NNLO	$12.09(2)^{+1.1\%}_{-1.1\%}$	$21.54(2)^{+1.1\%}_{-1.2\%}$	+7.0%	+8.6%
		σ [fb]		$\sigma/\sigma_{ m gg}$	_{LO} – 1
	ggLO	$0.79355(6)^{+28.2\%}_{-20.9\%}$	$2.0052(1)^{+23.5\%}_{-17.9\%}$	0%	0%
	$ggNLO_{gg}$	$1.4787(4)^{+15.9\%}_{-13.1\%}$	$3.626(1)^{+15.2\%}_{-12.7\%}$	+86.3%	+80.8%
	ggNLO	$1.3892(4)^{+15.4\%}_{-13.6\%}$	$3.425(1)^{+13.9\%}_{-12.0\%}$	+75.1%	+70.8%
		σ[fb]	$\sigma/\sigma_{ m NI}$	$_{\rm LO} - 1$
	NNLO	$12.88(2)^{+2.8\%}_{-2.2\%}$	$23.55(2)^{+3.0\%}_{-2.6\%}$	+14.0%	+18.7%

Top-quark loops \rightarrow permille level in inclusive cross section \rightarrow negligible

BUT important effects at high invariant masses

Interference @ NLO: massless vs massive quarks

Two-loop boxes are a problem (again)

Light-quark (~massless) known fully analytically [Caola et al. - 1509.06734]

$$2\,Re\left(\begin{smallmatrix} g & \underline{a} & \underline{a} & \underline{b} & \underline$$

Heavy quarks

➤ Exact numerical results available [Agarwal, Jones, von Manteuffel - 2011.15113; Brønnum-Hansen, Wang - 2101.12095]

Analytic approximations:

- $m_t\!\rightarrow\!\infty$ [Melnikov, Dowling - 1503.01274 ; Gröber, Maier, Rauh - 1605.04610]

-High-Energy exp [Davies et al. - 2002.05558] $m_Z^2 \ll m_t^2 \ll \hat{s}, \hat{t}$

$gg \rightarrow ZZ$: Top Quark Loops @NLO QCD

[Degrassi, Gröber, MV – in preparation]

ΗH

HH Production @LHC

Best shot at measurement of Higgs trilinear self-coupling

Gluon-initiated channel dominant

HH QCD corrections

$m_{\star} \rightarrow \infty$ limit: N3LO

[De Florian, Mazzitelli 1305.5206 and 1309.6594; . Grigo, Melnikov and Steinhauser - 1408.2422; Chen et al. - 1909.06808 and 1912.13001;]

Finite $1/m_{\star}$ effects

[Grigo, Hoff, Steinhauser - 1508.00909; Davies, Steinhauser – 1909.01361; Davies et al. 2110.03697]

Full top-mass dependence: NLO

Numerical evaluation

[Borowka et al. - 1604.06447, 1608.04798; Baglio et al. - 1811.05692]

Analytic approximations

[Davies et al. - 1811.05489; Bonciani et al. - 1806.11564; Wang et al. - 2010.15649]

(High-energy exp) (pT expansion) Small-mass expansion

Full phase space covered in [Bellafronte et al. – 2202.12157; Davies et a. - 2302.01356]

HH @NLO QCD (+ PS)

Full flexibility over choice of trilinear and top mass

Top mass scheme uncertainty studied differentially (see also [Baglio et al. - 2008.11626])

[Bagnaschi, Degrassi, Gröber - 2309.10525]

HH NLO EW

HH NLO EW

Complete NLO EW in Large Top Expasion $m_t^2 \gg \xi_W m_W^2, \xi_Z m_Z^2 \gg \hat{s}, \hat{t}, m_W^2, m_Z^2, m_H^2$ Typically valid for $\sqrt{\hat{s}} \lesssim 2m_t \sim 350 \text{GeV}$ Compromised by diagrams with t-W-b cut

[Davies, Schönwald, Steinhauser, Zhang - 2308.01355]

HH NLO EW

Full numerical evaluation

Inclusive cross-section

-4%, unaffected by choice of parameters

[Bi, Huang, Huang, Ma, Yu - 2311.16963]

Invariant-mass

- Large positive
 corrections at threshold
- -10% at high $M_{\rm HH}$

Negative corrections (-10%) at high pT

Conclusions

- ZH and ZZ: NNLO accuracy well established
- *gg*-initiated channel important ingredient for N3LO
- Top mass effects and relative scheme uncertainties are important

HH: NLO QCD with full top dependence NLO EW recently achieved

Getting closer to theorists' goal of 1% accuracy

Thank you for your attention

Backup

ΖH

Drell-Yan @ N3LO for ZH

[Baglio, Duhr, Mistlberger, Szafron - 2209.06138]

	١	s = 13 TeV	T	$\mu_0 = M$	V_{VH}		
Process	$\sigma^{\rm LO}$ [pb]	$\sigma^{\rm NLO} \ [{\rm pb}]$	$\mathbf{K}^{\mathrm{NLO}}$	$\sigma^{\rm NNLO}$ [pb]	$\mathbf{K}^{\mathrm{NNLO}}$	$\sigma^{\rm N^3LO} \; [{\rm pb}]$	$\mathrm{K}^{\mathrm{N^{3}LO}}$
W^+H	$0.758^{+2.43\%}_{-3.13\%}$	$0.883^{+1.38\%}_{-1.20\%}$	1.16	$0.891^{+0.28\%}_{-0.34\%}$	1.18	$0.884^{+0.27\%}_{-0.30\%}$	1.17
W^-H	$0.484^{+2.50\%}_{-3.26\%}$	$0.560^{+1.34\%}_{-1.23\%}$	1.16	$0.564^{+0.27\%}_{-0.34\%}$	1.17	$0.559^{+0.30\%}_{-0.33\%}$	1.16
ZH	$0.678^{+2.40\%}_{-3.11\%}$	$0.786^{+1.33\%}_{-1.16\%}$	1.16	$0.792^{+0.25\%}_{-0.32\%}$	1.17	$0.786^{+0.26\%}_{-0.29\%}$	1.16

N3LO corrections larger than NNLO corrections

- No reduction in scale uncertainties at N3LO
- Fixed $(\mu_0 = m_V + m_H)$ and dynamical $(\mu_0 = M_{VH})$ scale choice yield comparable results
- NNLO and N3LO scale bands do not overlap

Top-quark loops give dominant contribution [КпіеһІ ('90) - Dicus, Као ('88)]

- O(α_{s^2}) correction to $\sigma(pp \rightarrow ZH)$
- NNLO suppression wrt to $q\bar{q} \rightarrow ZH$ compensated by larger gluon luminosity Contributes to ~ 6% of $\sigma(pp \rightarrow ZH)$ for $\sqrt{s} = 14$ TeV
- Only LO included in MC \rightarrow scale variation leads to 25% relative uncertainties

$\begin{array}{ccccccc} 13 & 0.123 & & \begin{array}{c} +24.9 \\ -18.8 & & \begin{array}{c} 4.37 \\ +24.3 \\ -19.6 & \\ -19.6 \\ +25.3 \\ 14.5 & \\ 19.5 & \\ 5.85 \end{array} \\ \end{array}$	\sqrt{s} [TeV]	$\sigma_{ m NNLO~QCD\otimes NLO~EW}$ [pb]	$\Delta_{\rm scale}$ [%]	$\Delta_{\mathrm{PDF}\oplus \alpha_{\mathrm{s}}}$ [%]
$\begin{array}{cccccccc} 14 & 0.145 & & +24.3 & & 7.47 \\ 27 & 0.526 & & +25.3 & & 5.85 \end{array}$	13	0.123	$^{+24.9}_{-18.8}$	4.37
27 0.526 $^{+25.3}_{-185}$ 5.85	14	0.145	$^{+24.3}_{-19.6}$	7.47
-18.5	27	0.526	$^{+25.3}_{-18.5}$	5.85

[Cepeda et al. - 1902.00134]

$gg \rightarrow ZH @$ NLO in QCD - Ingredients

Virtual corrections $(2 \rightarrow 2, \text{ two loops})$ - interference with LO

Real emission $(2 \rightarrow 3, \text{ one loop})$ - squared amplitudes

Two-loop Massive Boxes for $gg \rightarrow ZH$

Numerical Evaluation [Chen, Heinrich, Jones, Kerner, Klappert, Schlenk - 2011.12325]

- Exact results
- Demanding in terms of computing resources and time
- Issues with flexibility

Analytic Approximations: exploit hierarchies of masses/kinematic invariants

Reduce the number of scales in Feynman integrals

Proliferation of integrals

Restricted to specific phase-space regions

Limit $m_t \rightarrow \infty$

[Altenkamp, Dittmaier, Harlander, Rzehak, Zirke - 1211.50]

Large mass expansion [Hasselhuhn, Luthe, Steinhauser - 1611.05881]

High-energy expansion: $m_Z^2, m_H^2 \ll m_t^2 \ll \hat{s}, \hat{t}$ [Davies, Mishima, Steinhauser - 2011.12314]

- Small-mass expansion: $m_Z, m_H \rightarrow 0$ [Wang, Xu, Xu, Yang - 2107.08206]
- **PT expansion:** $m_Z^2, m_H^2, p_T^2 \ll m_t^2, \hat{s}$ [Alasfar, Degrassi, Giardino Groeber, MV – 2103.06225]

pT Expansion - Calculation Overview

- 1. Generation of Feynman diagrams O(100 diags) (FeynArts [Hahn 0012260])
- 2. Lorentz decomposition of the amplitude: **projectors** and **scalar form factors** (FeynCalc [Mertig et al. ('91); Shtabovenko et al. 1601.01167]): contractions, Dirac traces...

$$\mathcal{A}_{\mu\nu\rho} = \sum_{i=1}^{6} \mathcal{P}_{\mu\nu\rho}^{(i)} F^{(i)} \qquad \qquad F^{(i)} = \sum_{i=1}^{n} C^{(i)} I^{(i)}(\hat{s}, \hat{t}, m_Z^2, m_H^2, m_t^2)$$

- 3. Expansion of the form factors in the limit of small pT
- Decomposition of scalar integrals using integration-by-parts (IBP) identities (LiteRed [Lee - 1310.1145])
- 5. Evaluation of master integrals

Steps implemented in Mathematica code on a desktop machine

pT Expansion - Details

We assume the limit of a **forward kinematics**

$$g(p_1)$$
 $Z(p_3)$
 $g(p_2)$ $U(p_2)$ $U(p_3)$ $H(p_4)$

$$(p_1 + p_3)^2 \to 0 \Leftrightarrow \hat{t} \to 0 \Rightarrow p_T \to 0$$

Then Taylor-expand the form factors in the ratios

$$\frac{m_{H}^{2}}{\hat{s}}, \frac{m_{Z}^{2}}{\hat{s}}, \frac{p_{T}^{2}}{\hat{s}} \ll 1 \qquad \qquad \frac{p_{T}^{2}}{4m_{t}^{2}} \ll 1$$

$$\frac{p_T^2}{4m_t^2} \ll 1$$

Expansion at integrand level

Now scalar loop integrals depend on fewer scales

$$I(\hat{s}, \hat{t}, m_Z^2, m_H^2, m_t^2) \to I'(\hat{s}, \hat{t}, m_t^2)$$

The new scalar integrals are decomposed in MIs using IBP relations The MIs depend on the ratio $\hat{s}/m_t^2 \Rightarrow$ only one scale

$$I(\hat{s}, \hat{t}, m_Z^2, m_H^2, m_t^2) \to I'(\hat{s}, \hat{t}, m_t^2) \to MI(\hat{s}/m_t^2)$$

52 MIs already known in the literature SAME MIS FOR $qq \rightarrow HH$, $qq \rightarrow ZH$, $qq \rightarrow ZZ$

Merging pT and HE Expansions at NLO

Improve the convergence of a series expansion by matching the coefficients of the **Pade approximant** [m/n] [e.g. Fleisher, Tarasov ('94)]

$$f(x) \stackrel{x \to 0}{\simeq} c_0 + c_1 x + \dots + c_q x^q \qquad f(x) \simeq [m/n](x) = \frac{a_0 + a_1 x + \dots + a_m x^m}{1 + b_1 x + \dots + b_n x^n} \quad (q = m + n)$$

[Bellafronte, Degrassi, Giardino, Gröber, MV -2103.06225] For each FF we merged the following results

- pT exp improved by [1/1] Padé
- HE exp improved by [6/6] Padé
- Padé results are stable and comparable in the region $|\hat{t}| \sim 4m_t^2 \rightarrow \text{can switch without loss of}$ accuracy (% level or below)
- Evaluation time for a phase-space point below 0.1 $s \Rightarrow$ suitable for Monte Carlo

$gg \rightarrow ZH$ @ vs Drell-Yan contribution

■ $gg \rightarrow ZH$ is almost 50% of DY near $M_{ZH} \sim 2 m_t$

DY obtained using vh@nnlo [Harlander et al - 1802.04817]

High-Energy Tails II – Z Radiation

In the high-energy tail ($M_{ZH} > 1 \text{ TeV}$) **qg** \rightarrow **ZHq channel**

- Z-radiated diagrams dominate
- Non-negligible contribution (up to 2% wrt DY)
- **a** $q\overline{q} \rightarrow$ ZHg channel
 - Z-radiated diagrams dominate
 - Negligible (PDF suppression)

$gg \rightarrow ZH @$ NLO QCD – Inclusive Cross Section

[Wang, Xu, Xu, Yang - 2107.08206]

$\sqrt{s} = 13 \text{TeV}$	$\mu_r = \mu_f$	$\sigma_{ m LO}^{gg}$	$\sigma_{ m NLO}^{gg}$	$\sigma_{pp\to ZH}^{\text{no }gg}$	$\sigma_{pp \to ZH}$	$\sigma_{\rm NLO}^{gg,m_t \to \infty}$	$\sigma_{pp \to ZH}^{m_t \to \infty}$
	$M_{ZH}/3$	73.56(7)	129.4(3)	784.0(7)	913.4(7)	133.6(6)	917.6(9)
	M_{ZH}	51.03(5)	101.7(2)	781.1(7)	882.9(7)	106.0(4)	887.2(8)
	$3M_{ZH}$	36.62(4)	80.4(2)	780.7(8)	861.1(8)	84.0(3)	864.8(9)

[Chen et al 2204.05225]	\sqrt{s}	LO [fb]	NLO [fb]
и — н — М	$13\mathrm{TeV}$	$52.42^{+25.5\%}_{-19.3\%}$	$103.8(3)^{+16.4\%}_{-13.9\%}$
$\mu_r - \mu_f - M_{ZH}$	$13.6\mathrm{TeV}$	$58.06^{+25.1\%}_{-19.0\%}$	$114.7(3)^{+16.2\%}_{-13.7\%}$
	$14\mathrm{TeV}$	$61.96^{+24.9\%}_{-18.9\%}$	$122.2(3)^{+16.1\%}_{-13.6\%}$

General agreement between the three results when same inputs are adopted

	Top-mass scheme	LO [fb]	$\sigma_{LO}/\sigma_{LO}^{OS}$	NLO [fb]	$\sigma_{NLO}/\sigma_{NLO}^{OS}$	$K\!=\!\sigma_{NLO}/\sigma_{LO}$
$\sqrt{s} = 13 \text{TeV}$ $\mu_r = \mu_f = M_{ZH}/2$	On-Shell	$64.01^{+27.2\%}_{-20.3\%}$		$118.6^{+16.7\%}_{-14.1\%}$		1.85
	$\overline{\mathrm{MS}}, \mu_t = M_{ZH}/4$	$59.40^{+27.1\%}_{-20.2\%}$	0.928	$113.3^{+17.4\%}_{-14.5\%}$	0.955	1.91
	$\overline{\mathrm{MS}}, \mu_t = m_t^{\overline{\mathrm{MS}}}(m_t^{\overline{\mathrm{MS}}})$	$57.95^{+26.9\%}_{-20.1\%}$	0.905	$111.7^{+17.7\%}_{-14.6\%}$	0.942	1.93
	$\overline{\mathrm{MS}}, \mu_t = M_{ZH}/2$	$54.22^{+26.8\%}_{-20.0\%}$	0.847	$107.9^{+18.4\%}_{-15.0\%}$	0.910	1.99
	$\overline{\mathrm{MS}}, \mu_t = M_{ZH}$	$49.23^{+26.6\%}_{-19.9\%}$	0.769	$103.3^{+19.6\%}_{-15.6\%}$	0.871	2.10

$gg \rightarrow ZH @$ NLO QCD – Inclusive Cross Section

[Wang, Xu, Xu, Yang - 2107.08206]

$\sqrt{s} = 13 \text{TeV}$	$\mu_r = \mu_f$	$\sigma_{ m LO}^{gg}$	$\sigma^{gg}_{ m NLO}$	$\sigma_{pp\to ZH}^{\text{no }gg}$	$\sigma_{pp \to ZH}$	$\sigma_{\rm NLO}^{gg,m_t \to \infty}$	$\sigma_{pp \to ZH}^{m_t \to \infty}$
	$M_{ZH}/3$	73.56(7)	129.4(3)	784.0(7)	913.4(7)	133.6(6)	917.6(9)
	M_{ZH}	51.03(5)	101.7(2)	781.1(7)	882.9(7)	106.0(4)	887.2(8)
	$3M_{ZH}$	36.62(4)	80.4(2)	780.7(8)	861.1(8)	84.0(3)	864.8(9)

NLO corrections are the same size as LO

	Top-mass scheme	LO [fb]	$\sigma_{LO}/\sigma_{LO}^{OS}$	NLO [fb]	$\sigma_{NLO}/\sigma_{NLO}^{OS}$	$K = \sigma_{NLO} / \sigma_{LO}$
	On-Shell	$64.01^{+27.2\%}_{-20.3\%}$		$118.6^{+16.7\%}_{-14.1\%}$		1.85
$\sqrt{s} = 13 \text{TeV}$	$\overline{\mathrm{MS}}, \mu_t = M_{ZH}/4$	$59.40^{+27.1\%}_{-20.2\%}$	0.928	$113.3^{+17.4\%}_{-14.5\%}$	0.955	1.91
$\mu_r = \mu_f = M_{ZH}/2$	$\overline{\mathrm{MS}}, \mu_t = m_t^{\overline{\mathrm{MS}}}(m_t^{\overline{\mathrm{MS}}})$	$57.95^{+26.9\%}_{-20.1\%}$	0.905	$111.7^{+17.7\%}_{-14.6\%}$	0.942	1.93
•	$\overline{\mathrm{MS}}, \mu_t = M_{ZH}/2$	$54.22^{+26.8\%}_{-20.0\%}$	0.847	$107.9^{+18.4\%}_{-15.0\%}$	0.910	1.99
	$\overline{\mathrm{MS}}, \mu_t = M_{ZH}$	$49.23^{+26.6\%}_{-19.9\%}$	0.769	$103.3^{+19.6\%}_{-15.6\%}$	0.871	2.10

$gg \rightarrow ZH @$ NLO QCD – Inclusive Cross Section

[Wang, Xu, Xu, Yang - 2107.08206]

$\sqrt{s} = 13 \text{TeV}$	$\mu_r = \mu_f$	$\sigma_{ m LO}^{gg}$	$\sigma_{ m NLO}^{gg}$	$\sigma_{pp\to ZH}^{\text{no }gg}$	$\sigma_{pp \to ZH}$	$\sigma_{\rm NLO}^{gg,m_t \to \infty}$	$\sigma_{pp \to ZH}^{m_t \to \infty}$
	$M_{ZH}/3$	73.56(7)	129.4(3)	784.0(7)	913.4(7)	133.6(6)	917.6(9)
	M_{ZH}	51.03(5)	101.7(2)	781.1(7)	882.9(7)	106.0(4)	887.2(8)
	$3M_{ZH}$	36.62(4)	80.4(2)	780.7(8)	861.1(8)	84.0(3)	864.8(9)

	Top-mass scheme	LO [fb]	$\sigma_{LO}/\sigma_{LO}^{OS}$	NLO [fb]	$\sigma_{NLO}/\sigma_{NLO}^{OS}$	$K\!=\!\sigma_{NLO}/\sigma_{LO}$
$\sqrt{s} = 13 \text{TeV}$	On-Shell	$64.01^{+27.2\%}_{-20.3\%}$	—	$118.6^{+16.7\%}_{-14.1\%}$		1.85
	$\overline{\mathrm{MS}}, \mu_t = M_{ZH}/4$	$59.40^{+27.1\%}_{-20.2\%}$	0.928	$113.3^{+17.4\%}_{-14.5\%}$	0.955	1.91
$\mu_r = \mu_f = M_{ZH}/2$	$\overline{\mathrm{MS}}, \mu_t = m_t^{\overline{\mathrm{MS}}}(m_t^{\overline{\mathrm{MS}}})$	$57.95^{+26.9\%}_{-20.1\%}$	0.905	$111.7^{+17.7\%}_{-14.6\%}$	0.942	1.93
	$\overline{\mathrm{MS}}, \mu_t = M_{ZH}/2$	$54.22^{+26.8\%}_{-20.0\%}$	0.847	$107.9^{+18.4\%}_{-15.0\%}$	0.910	1.99
	$\overline{\mathrm{MS}}, \mu_t = M_{ZH}$	$49.23^{+26.6\%}_{-19.9\%}$	0.769	$103.3^{+19.6\%}_{-15.6\%}$	0.871	2.10

