

BSM Physics in double Higgs production Role of BSM triple Higgs couplings

Francisco Arco (he/him)

1st COMETA Meeting – İzmir, Türkiye – February 29, 2024

Based on:

- *e*⁺*e*⁻ colliders: FA, S. Heinemeyer, M.J. Herrero, Eur.Phys.J.C 81 (2021) 10, 913, arXiv:2106.11105
- Hadron colliders: FA, S. Heinemeyer, M. Mühlleitner, K. Radchenko, Eur.Phys.J.C 81 (2021) 10, 913, arXiv:2106.11105

Motivation: the Higgs sector

- The discovered Higgs boson is consistent with the SM :(
- However self-interactions not measured with high accuracy

Plenty of room for *new physics*!

- Framework: two Higgs doublet model (2HDM)
- 5 Higgs bosons + complete new scalar sector

Why di-Higgs?

Triple Higgs couplings (THC) can enter at leading order (LO) in di-Higgs production

Two Higgs Doublet Model (2HDM)

SM + second Higgs doublet 5 physical Higgs bosons: h, H, A and H^{\pm}

$$\begin{aligned} V_{2\text{HDM}} &= m_{11}^2 \left(\Phi_1^{\dagger} \Phi_1 \right) + m_{22}^2 \left(\Phi_2^{\dagger} \Phi_2 \right) - \left[m_{12}^2 \left(\Phi_1^{\dagger} \Phi_2 \right) + \text{h.c.} \right] + \frac{\lambda_1}{2} \left(\Phi_1^{\dagger} \Phi_1 \right)^2 + \frac{\lambda_2}{2} \left(\Phi_2^{\dagger} \Phi_2 \right)^2 \\ &+ \lambda_3 \left(\Phi_1^{\dagger} \Phi_1 \right) \left(\Phi_2^{\dagger} \Phi_2 \right) + \lambda_4 \left(\Phi_1^{\dagger} \Phi_2 \right) \left(\Phi_2^{\dagger} \Phi_1 \right) + \left[\frac{\lambda_5}{2} \left(\Phi_1^{\dagger} \Phi_2 \right)^2 + \text{h.c.} \right] \end{aligned}$$

- CP conservation: (h, H even, A odd)
- Z_2 symmetry to avoid FCNC (sofly broken by m_{12}^2) \rightarrow only consider type I
- Input parameters:

 $m_h \ (\sim 125 \text{ GeV}), \ m_H, m_A, m_{H^{\pm}}, \ \tan\beta, \cos\left(\beta - \alpha\right) \equiv c_{\beta - \alpha}, \ m_{12}^2$

• <u>Alignment limit</u>: for $c_{\beta-\alpha} = 0$ the SM interactions for *h* are recovered

Triple Higgs Couplings in the 2HDM

 $=-ivn!\lambda_{hh_ih_j}$ and $\kappa_\lambda\equivrac{\lambda_{hhh}}{\lambda_{hhh}^{
m SM}}$

Tree-level triple Higgs couplings (THC) given by:

Allowed ranges at the tree-level:

	U				
	Туре I	Type II			
κ_{λ}	[-0.5, 1.3]	[0.6, 1.0]			
λ_{hhH}	[-1.7, 1.6]	[-1.8, 1.5]			

[FA, Heinemeyer, Herrero,

(*n* = # identical bosons) ■ Constraints:

h

- EWPO, mainly T parameter
- Tree-level unitarity and potential stability
- BSM Higgs boson searches @LHC, TeVatron and LEP

In the <u>alignment limit</u>: $\kappa_{\lambda} = 1$ and $\lambda_{hhH} = 0$

- Properties of the SM-like Higgs boson
 - Close to alignment limit i.e. $c_{\beta-\alpha} \simeq 0$, less severe in type I
- \blacksquare Flavor Observables $B_s \to \mu \mu, b \to s \gamma$

2HDMC, HiggsBounds, HiggsSignals, SuperISO were used

e^+e^- vs hadron collider

- Total XS presented in benchmark planes with large (and allowed) THC
 - Full computation with all LO diagrams, i.e. no NWA!

[FA, Heinemeyer, Herrero, 2106.11105]

- e^+e^- colliders: ILC and CLIC
 - $e^+e^- \rightarrow hhZ, \ hh\nu\bar{\nu}$ (VBF)
 - Tree level computation: Madgraph
 - *hhZ* (*hhvv*) dominates at low (large) energies

[FA, Heinemeyer, Mühlleitner, Radchenko, 2212.11242]

- Hadron colliders: HL-LHC
 - Gluon-gluon fusion $gg \to hh$
 - One-loop calculation: HPAIR
 - NLO QCD corrections also included in the total XS (K-factor ~ 2)
- Access to triple Higgs couplings (THC) via the differential cross section distributions on the invariant mass of the final Higgs pair m_{hh}

Main BSM effects from THC

A) Non-resonant diagram with $\kappa_{\lambda} \rightarrow \text{important at low } m_{hh}$

- Interference with the other diagrams
- B) **Resonant** *H* diagram with $\lambda_{hhH} \rightarrow$ important when $m_{hh} \simeq m_H$

C) Only at e^-e^+ colliders, resonant A diagram (no THC)

At both colliders, in the alignment limit $\sigma_{2HDM} = \sigma_{SM}$ (at LO)

At e^+e^- colliders

hhZ cross section @ILC 500 GeV

• hhZ is the dominant channel at this energy

• $c_{\beta-\alpha} - \tan\beta$ plane (with large masses) \rightarrow effect of $\kappa_{\lambda} \neq 1$

• $c_{\beta-\alpha}-m$ plane (with low masses) $\rightarrow H$ and A resonances with $\sigma \sim 5\sigma_{\rm SM} \sim 0.8 \text{ fb}$

Triple Higgs Couplings @ILC 500 GeV

- A) $\kappa_{\lambda} \rightarrow$ at the threshold GeV (light blue line) B) $\lambda_{hhH} \rightarrow$ resonant peak at
 - $m_{hh} \simeq m_H$ (dark blue line)
 - C) A resonance \rightarrow plateau wrt the SM (yellow line)
- κ_{λ} and λ_{hhH} effects "mixed" if m_H close to threshold
- Asymmetry of the *H* peak \rightarrow λ_{hhH} sign

$hh\nu\bar{\nu}$ cross section @CLIC 3 TeV

• $hh\nu\nu$ is the dominant channel at this energy

- Now the H and A resonant production is sizable also for large Higgs masses
- For moderate masses $\sigma \sim 3\sigma_{\rm SM}$ and for low masses up to $\sigma \sim 10\sigma_{\rm SM}$

Triple Higgs Couplings @CLIC 3 TeV

$$\sigma(e^+e^- \to hhv\overline{\nu}), \sqrt{s} = 3000 \text{ GeV}$$

- A) $\kappa_{\lambda} \rightarrow$ at the threshold
 - Different from SM even with $\kappa_{\lambda} = 1$
- B) $\lambda_{hhH} \rightarrow \text{prominent}$ resonant peak at $m_{hh} \simeq m_H$
 - Dip-peak structure \rightarrow sign of λ_{hhH}
- C) no A resonance

Great access to λ_{hhH} @CLIC 3TeV !

- Estimated "sensitivity" to λ_{hhH} from the expected final 4b jet events at the H peak:
 - Overall, larger "sensitivity" to \(\lambda_{hhH}\) at VBF channel at @3TeV
 - Also good
 "sensitivity" if m_H is very low

At the HL-LHC

- **•** XS shows effects from κ_{λ} and λ_{hhH} in both planes
- Effect from H resonant production only important for m_H below ~600 GeV

Effect of κ_{λ} @HL-LHC

- Access to κ_{λ} via the differential XS
 - A) $\kappa_{\lambda} \rightarrow$ at the threshold Larger XS for $\kappa_{\lambda} < 1$
 - B) $\lambda_{hhH} \rightarrow$ No resonant peak at $m_{hh} \simeq m_H$ (red arrows)

Very small H Yukawa coupling

Effect of λ_{hhH} @HL-LHC

Effect of experimental uncertainties

Smearing: uncertainty from the finite resolution of the detectors

More realistic bin size: ~ 50 GeV

Summary & Conclusions

- Overview of the BSM effects from triple Higgs couplings (THC) in double Higgs production in the 2HDM (type I), still allowed by present constraints
- $\kappa_{\lambda} \rightarrow \text{non-resonant effect, important at low } m_{hh}$ (similar to SM unless H is light)
- λ_{hhH} → resonant effect, experimental access via resonant production
 - At e^+e^- colliders: good prospects for the VBF channel @CLIC 3TeV, ILC could be competitive if H is light
 - At HL-LHC: resonant H contributions possible if H is relatively light below ~ 600 GeV
 - Challenging reconstruction of the final signature (bin resolution + smearing)
- **Future directions!** 1-loop effects to κ_{λ} can be sizable even in the alignment limit! To be continued...

Thanks for your attention! :)

Back up

XS vs κ_{λ} in the SM at LHC

XS vs κ_{λ} in the SM at e^+e^- colliders

 $e^+e^- \rightarrow v \overline{v}hh$

2HDM Yukawa couplings

$$\mathcal{L}_{\text{Yukawa}} \supset -\sum_{f=u,d,l} \frac{m_f}{v} \left[\xi_f^h \bar{f} fh + \xi_f^H \bar{f} fH + \xi_f^A \bar{f} \gamma_5 fA \right]$$
$$-\frac{\sqrt{2}}{v} \left[\bar{u} \left(\xi_d V_{\text{CKM}} m_d P_R - \xi_u m_u V_{\text{CKM}} P_L \right) dH^+ + \xi_l \bar{\nu} m_l P_R lH^+ + \text{h.c.} \right]$$

	Type I	Type II	Type III	Type IV
$-\xi_u$	\coteta	\coteta	\coteta	\coteta
ξ_d	\coteta	$-\tan\beta$	$-\taneta$	\coteta
ξ_l	\coteta	$-\tan\beta$	\coteta	$-\tan\beta$

with
$$\xi_{f}^{h} = s_{\beta-\alpha} + \xi_{f}c_{\beta-\alpha}, \xi_{f}^{H} = c_{\beta-\alpha} - \xi_{f}s_{\beta-\alpha}, \xi_{u}^{A} = -i\xi_{u}, \xi_{d,l}^{A} = i\xi_{d,l}$$

Plane 1

Plane 3

R "sensitivity" at e^+e^- colliders

Cuts: $p_T^b > 20 \text{ GeV}, |\eta^b| < 2, p_T^Z > 20 \text{ GeV}, \Delta R_{bb} > 0.4, \not\!\!\!E_T > 20 \text{ GeV}$

$hh uar{ u}$	$\sqrt{s} [\text{GeV}]$	$\sigma_{\rm 2HDM} / \sigma_{\rm SM} \text{ [fb]}$	$\bar{N}^R_{4b\! \not\! E_T} / \bar{N}^C_{4b\! \not\! E_T} / \bar{N}^{\rm SM}_{4b\! \not\! E_T}$	$ $ $\mathcal{A}_{ m 2HDM}/$ $\mathcal{A}_{ m SM}$	R_{4bE_T}	h	hZ	$\sqrt{s} \; [\text{GeV}]$	$\sigma_{\rm 2HDM} / \sigma_{\rm SM} ~[{\rm fb}]$	\bar{N}^R_{4bZ} / \bar{N}^C_{4bZ} / $\bar{N}^{\rm SM}_{4bZ}$	$\mid \mathcal{A}_{ m 2HDM} / \mid \mathcal{A}_{ m SM} \mid$	R_{4bZ}
BP1	500	0.404 / 0.034	119 / 4 / 1	0.70 / 0.68	58			500	1.063 / 0.158	193 / 10 / 3	0.70 / 0.68	58
	1000	2.391 / 0.097	1510 / 24 / 0	$0.65 \ / \ 0.55$	303	BP1	D1	1000	0.913 / 0.120	206 / 1 / 4	0.70 / 0.71	205
	1500	4.423 / 0.239	794 / 13 / 2	0.58 / 0.41	217			1500	0.493 / 0.077	22 / < 1 / 1	0.51 / 0.62	-
	3000	9.098 / 0.819	2425 / 46 / 6	0.44 / 0.25	351			3000	0.147 / 0.033	1 / < 1 / < 1	0.05 / 0.05	-
BP2	1000	0.234 / 0.097	79 / 3 / 1	0.65 / 0.55	44			1000	0.156 / 0.120	20 / 1 / 1	0.73 / 0.71	19
	1500	$0.625 \ / \ 0.239$	70 / 3 / 1	$0.56 \ / \ 0.41$	39	BP2	8P2 [1500	0.106 / 0.077	4 / < 1 / < 1	0.65 / 0.62	-
	3000	1.850 / 0.819	282 / 28 / 9	0.41 / 0.25	48			3000	0.042 / 0.033	< 1 / < 1 / < 1	0.07 / 0.05	-
BP3	1000	0.208 / 0.097	85 / 5 / 3	0.66 / 0.55	36			1000	0.254 / 0.120	29 / 5 / 2	0.71 / 0.71	11
	1500	0.709 / 0.239	111 / 5 / 3	0.61 / 0.41	47	B	8P3 [1500	0.218 / 0.077	8 / 1 / < 1	0.70 / 0.62	7
	3000	2.422 / 0.819	577 / 30 / 11	0.47 / 0.25	100			3000	0.086 / 0.033	1 / < 1 / < 1	0.08 / 0.05	-
BP4	1500	0.428 / 0.239	4 / < 1 / < 1	0.50 / 0.41	-	р		1500	0.075 / 0.077	1 / < 1 / < 1	0.64 / 0.62	-
	3000	1.523 / 0.819	72 / 4 / 3	0.38 / 0.25	34		PF 4	3000	0.038 / 0.033	< 1 / < 1 / < 1	0.07 / 0.05	-