Introduction	Status of fixed-order predictions	Miscellanea	Conclusions
000	0000000	0000	00

Precise (fixed-order) predictions for vector-boson scattering

Christopher Schwan

29 February 2024, İzmir

Introduction 000 Reminder: what is vector-boson scattering? production of two EW gauge bosons (usually W^{\pm}/Z) $2 \rightarrow 6$ opposite-sign VBS: e together with two jets (a) with decays at $\mathcal{O}(\alpha^6)$ (LO) 4 categories for fully leptonic decays: • $pp \rightarrow W^{\pm}W^{\pm}jj$: like-sign scattering • $pp \rightarrow W^{\pm}Zjj$: WZ scattering • $pp \rightarrow ZZjj$: ZZ scattering • $pp \rightarrow W^+W^-jj$: opposite-sign scattering $\mathcal{M}_{VBS}^{WZ} =$

- - QGC at LO (with VVV production)
 - Higgs-V-V couplings and Higgs usually off-shell
 - Probe EW symmetry breaking

Introduction 000 How precise do we need our calculations to be? CMS Phase-2 Simulation Preliminary (14 TeV) Cross section uncertainty (%) Total uncertainty on cross-section [%] with YR18 syst uncert ATLAS Simulation Internal 10 √s=14 TeV Statistical sources of uncertainty 6 pp → W[±]W[±]ii heoretical sources of uncertainty Systematic sources of uncertainty All sources of uncertainty 1000 2000 3000 4000 5000 6000 1000 2000 8000 Luminosity (fb⁻¹) Luminositv(fb⁻¹)

- plots from [P. Azzi et al.]
- CMS: only statistical and experimental systematic uncertainties
- \bullet for the integrated cross section for $\mathrm{W^+W^+}$ NLO predictions will be needed
- NNLO not needed yet (pfew!)

Miscellanea 0000

What have we got to calculate?

Fixed-order tower for W⁺W⁻ scattering:

Introduction	Status of fixed-order predictions	Miscellanea	Conclusions
000	●○○○○○○	0000	00

Part I. VBS channels with fully leptonic decays

First fully off-shell calculations:

- W⁺W⁺:
 - [T. Melia, K. Melnikov, R. Röntsch, G. Zanderighi]: $\mathcal{O}(lpha_{
 m s}^3 lpha^4)$
 - [B. Biedermann, A. Denner, M. Pellen]: $\mathcal{O}(lpha^7)$
 - [B. Biedermann, A. Denner, M. Pellen]: $\mathcal{O}(\alpha^7)$, $\mathcal{O}(\alpha_{
 m s}\alpha^6)$ and $\mathcal{O}(\alpha_{
 m s}^2\alpha^5)$
- W⁺Z:

• [F. Campanario , M. Kerner , L.D. Ninh , D. Zeppenfeld]: $\mathcal{O}(lpha_{
m s}^3 lpha^4)$

• [A. Denner, S. Dittmaier, P. Maierhöfer, M. Pellen, C.S.]: $\mathcal{O}(\alpha^7)$ and $\mathcal{O}(\alpha_{\rm s}\alpha^6)$

- ZZ:
 - [F. Campanario , M. Kerner , L.D. Ninh , D. Zeppenfeld]: $\mathcal{O}(lpha_{
 m s}^3 lpha^4)$
 - [A. Denner, R. Franken, M. Pellen, T. Schmidt]: ${\cal O}(lpha^7)$ and ${\cal O}(lpha_{
 m s} lpha^6)$
 - [A. Denner, R. Franken, M. Pellen, T. Schmidt]: $\mathcal{O}(\alpha_s^2 \alpha^5)$
- W⁺W⁻:
 - [T. Melia, K. Melnikov, R. Röntsch, G. Zanderighi]: $\mathcal{O}(lpha_{
 m s}^3 lpha^4)$
 - [A. Denner, R. Franken, T. Schmidt, C.S.]: $\mathcal{O}(lpha^7)$ and $\mathcal{O}(lpha_{
 m s} lpha^6)$

Introduction	Status of fixed-order predictions	Miscellanea	Conclusions
000	○○●○○○○	0000	00

LO fractions

Different setups with $\Delta y_{j_1 j_2} > 2.5$ and $M_{j_1 j_2} > 500$ GeV:

Process	Total	$\mathcal{O}(\alpha_{\rm s}^4 \alpha^4)$	$\mathcal{O}(\alpha_{\rm s}^2 \alpha^6)$	$\mathcal{O}(\alpha_{\rm s}\alpha^5)$	$\mathcal{O}(\alpha^6)$	Remark
	נמון	[70]	[70]	[70]	[70]	
W^+W^+	1.63	_	10.5	2.9	86.7	
W^+Z	1.36		80.7	0.5	18.8	
ZZ	0.22	5.9	59.5	2.4	32.2	no $\Delta y_{\mathrm{j}_1\mathrm{j}_2}$ cut
W^+W^-	9.87	2.0	70.0	0.7	27.3	

 $\bullet~{\rm W^+W^+}:$ more signal than background, although naively $\alpha_{\rm s}^2\alpha^4\gg\alpha^6$

- more Z-bosons, less cross section
- less charge, more gluons \Rightarrow more background
- $\mathcal{O}(\alpha_s^4 \alpha)$: loop-induced 4-gluon processes

Results from:

- W⁺W⁺: [B. Biedermann, A. Denner, M. Pellen]
- W⁺Z: [A. Denner, S. Dittmaier, P. Maierhöfer, M. Pellen, C.S.]
- ZZ: [A. Denner, R. Franken, M. Pellen, T. Schmidt]
- W⁺W⁻: [A. Denner, R. Franken, T. Schmidt, C.S.]

Differential distributions for $\mathrm{W}^+\mathrm{W}^-$ VBS

- starting at $M_{
 m j_1 j_2} pprox$ 1500 GeV EW and QCD production cross
- $\bullet\,$ size of the 4 gluon loop-induced up to 4.5 $\%\,$
- $\mathcal{O}(\alpha_{\rm s}\alpha^6)$ comparatively small
- $\mathcal{O}(\alpha^7)$ as large as $-20\,\%$ of the *total* LO

Miscellanea 0000

EW corrections for VBS cross sections

Process	W^+W^+	W^+Z	ZZ	W^+W^-
$\sigma_{ m NLO}^{lpha^7}[{\sf fb}]$	-0.2169(3)	-0.04091(2)	-0.015573(5)	-0.307(1)
$\sigma^{lpha^6}_{ m LO}[{\sf fb}]$	1.4178(2)	0.25511(1)	0.097683(2)	2.6988(3)
δ^{α^7} [%]	-15.3	-16.0	-15.9	-11.4

• EW corrections, $\delta^{\alpha^7} = \sigma_{\rm NLO}^{\alpha^7} / \sigma_{\rm LO}^{\alpha^6}$, for VBS processes typically -15% to -16%

• understood from EW logs [A. Denner, S. Pozzorini]:

$$\delta_{\rm EW,LL} \approx \frac{\alpha}{4\pi} \left\{ -4 C_{\rm W}^{\rm EW} \log^2 \left(\frac{Q^2}{M_{\rm W}^2} \right) + 2 b_{\rm W}^{\rm EW} \log \left(\frac{Q^2}{M_{\rm W}^2} \right) \right\}$$

• with $C_{
m W}^{
m EW}=2/\sin heta_{
m w},~b_{
m W}^{
m EW}=19/6\sin heta_{
m w},~Q=M_{4\ell}$, usually $\langle Q^2
angle pprox$ 400 GeV

 \rightarrow How is W^+W^- VBS special?

- \rightarrow We sum the diagrams, so it's both
 - more Higgs VBF lowers $\langle Q^2
 angle$ from 400 GeV towards $M_{
 m H}=$ 125 GeV and thus
 - lowers the size of EW corrections
 - more VBS increases $\langle Q^2 \rangle$ towards 400 GeV and
 - $\bullet\,$ increases the size of EW corrections towards the $-15\,\%$
 - \rightarrow we can test this!

Miscellanea 0000

W⁺W⁻ VBS and Higgs VBF: $\delta^{\alpha^7} = \sigma_{\rm NLO}^{\alpha^7} / \sigma_{\rm LO}^{\alpha^6}$

 δ^{α^7} 0% Increase Higgs VBF (Higgs setup): we force the Higgs on-shell: pp $\rightarrow H_{ij} \rightarrow 2\ell 2\nu_{ij}$ $60 \,\mathrm{GeV} < M_{\mathrm{T},2\ell,2\nu} < 125 \,\mathrm{GeV}$ -6.7 % Higgs setup $|M_{2\ell 2\mu} - M_{\rm H}| > 20\Gamma_{\rm H}$ VBS setup + Higgs cut removes 98% of the Higgs BW -11.4% VBS setup -13.2% VBS setup + Higgs cut -15% (typical VBS EW corr.) peak \rightarrow a sizable fraction (27 %) of Higgs VBF mixes with opposite-sign VBS! \rightarrow mostly responsible for smaller corrections (see table in backup slides)

		Miscellanea	
000	0000000	0000	00

Part II. Miscellanea

Important: beyond fixed-order

- matching to parton showers [A. Ballestrero et al.] [M. Chiesa, A. Denner, J.-N. Lang, M. Pellen]
- large EW corrections \rightarrow automated resummation of Sudakov logarithms [E. Bothmann, D. Napoletano, M. Schönherr, S. Schuhmann, S. Luca] [A. Denner, S. Rode]
- $\bullet \ \mathsf{EFT} \to \mathsf{Giacomo's talk}$
- polarized observables @ NLO: access longitudinal polarizations, (more) direct test of EWSB

- see Rene's and Joany's talk yesterday
- VBS at LO: [A. Ballestrero, E. Maina, G. Pelliccioli], [A. Ballestrero, E. Maina, G. Pelliccioli], [A. Ballestrero, E. Maina, G. Pelliccioli], [D.B. Franzosi, O. Mattelaer, R. Ruiz, S. Shil]
- $ightarrow\,$ talk by Diana later today

Introduction 000	Status of fixed-order predictions 0000000	Miscellanea ○○●○	Conclusions 00

Outlook: semi-leptonic VBS channels

 $pp \rightarrow \ell^+ \ell^- jjjj + X$ and $pp \rightarrow \ell^+ \nu_\ell jjjj + X @ \mathcal{O}(\alpha^6)$:

- \bullet necessarily sums $W^+W^+\text{, }W^+Z$ and W^+W^-
- 192 partonic channels at O(α⁶)
- NLO is going to be challenging

Preliminary results:

- larger cross section: 2.5 fb (boosted) 10 fb (resolved)
- setup from [CMS collaboration], see Nurfikri's talk yesterday
- preliminary results, comparing $\mathcal{O}(\alpha^6)$ fully off-shell vs. pole approximation (PA)

How do we make our predictions useful for the experiment?

- \bullet Dominant $\mathcal{O}(\alpha^7)$ corrections expensive, can't be done with MCs like Madgraph5_aMC@NLO
- MoCaNLO produces histograms for arbitrary observables O into n bins:

$$\left\{\mathcal{O}_L^i,\;\mathcal{O}_R^i,\;\frac{1}{\mathcal{O}_R^i-\mathcal{O}_L^i}\int_{\mathcal{O}_L^i}^{\mathcal{O}_R^i}\mathrm{d}\mathcal{O}\frac{\mathrm{d}\sigma}{\mathrm{d}\mathcal{O}}\right\}_{i=1}^n$$

- time-consuming, but straightforward: rerun for other cuts and bin limits
- MoCaNLO can't produce unweighted events: technical limitation

Possible avenues with Madgraph5_aMC@NLO/SHERPA:

- run it with Sudakov logs [E. Bothmann, D. Napoletano] [D. Pagani, M. Zaro] [D. Pagani, T. Vitos, M. Zaro]
- compare against exact results
- if agreement is found, use it and reweight

Introduction	Status of fixed-order predictions	Miscellanea	Conclusions
000	0000000	0000	●○

Part III. Conclusions

Introduction 000	Status of fixed-order predictions	Miscellanea 0000	Conclusions

Summary

- calculations for the whole NLO tower done for almost all VBS channels
- $\mathcal{O}(\alpha_s^2 \alpha^5)$ missing for W^+Z and W^+W^-
- $\bullet\,$ EW corrections to VBS are universally $-15\,\%$ to $-16\,\%,$ if no significant overlap with other processes
- $\bullet\,$ such a case is $W^+W^-\colon\,$ Higgs VBF

Outlook/wishlist:

- semi-leptonic VBS channels
- matching to parton showers
- polarized predictions
- ... in a form easily usable by the experiments

Questions?

No Higgs integrated results

VBS cross sections with additional Higgs cut:

^{ه ۵°} [%]
-2.7
7.1
0.1
$ imes 10^4$
$ imes 10^3$
$ imes 10^5$
-0.4

NLO coupling tower: $pp \rightarrow \mu^+ \nu_\mu 4j + X$

- the process ${
 m pp}
 ightarrow \mu^+
 u_\mu 4{
 m j} + X$ contains up to 3 quark lines
- can exchange 0, 1, 2 gluons between them \Rightarrow more complicated NLO tower

• $\mathcal{O}(\alpha_s^4 \alpha^2)$, $\mathcal{O}(\alpha_s^2 \alpha^4)$ and $\mathcal{O}(\alpha^6)$ calculated in [A. Ballestrero, G. Bevilacqua, E. Maina] • $\mathcal{O}(\alpha_s^5 \alpha^2)$: [C.F. Berger et al.]

NLO distributions: transverse momentum of the leading jet

- left: VBS-, right: Higgs-setup
- band indicates 7-point scale uncertainties

NLO distributions: dilepton invariant mass

- left: VBS-, right: Higgs-setup
- band indicates 7-point scale uncertainties

NLO distributions: leading jet rapidity

- left: VBS-, right: Higgs-setup
- band indicates 7-point scale uncertainties

LO distributions: dilepton invariant mass

- left: VBS-, right: Higgs-setup
- band indicates MC integration uncertainties

LO distributions: four-lepton invariant mass

- left: VBS-, right: Higgs-setup
- band indicates MC integration uncertainties

LO distributions: Leading-jet-muon distance

- left: VBS-, right: Higgs-setup
- band indicates MC integration uncertainties

LO distributions: Centrality of the positron

- left: VBS-, right: Higgs-setup
- band indicates MC integration uncertainties

NLO distributions: leading jet transverse momentum

- left: VBS-, right: Higgs-setup
- band indicates MC integration uncertainties

NLO distributions: dilepton transverse momentum

- left: VBS-, right: Higgs-setup
- band indicates MC integration uncertainties

NLO distributions: dilepton invariant mass

- left: VBS-, right: Higgs-setup
- band indicates MC integration uncertainties

NLO distributions: leading jet rapidity

- left: VBS-, right: Higgs-setup
- band indicates MC integration uncertainties

NLO distributions: leading jet rapidity separation

- left: VBS-, right: Higgs-setup
- band indicates MC integration uncertainties