

State-of-the-art of HH and multi-Higgs searches in ATLAS and CMS

Petar Bokan First general meeting of the COMETA COST Action Izmir, February 28 - March 01, 2024

The Higgs boson

Standard Model particles: discovery timeline

The Higgs field is necessary in the Standard Model for realising spontaneous electroweak symmetry breaking

The Higgs boson interactions

Observed Higgs boson remarkably consistent with the SM theory!

Interactions

- Gauge interactions (W, Z observed)
- Yukawa interactions (t, b, τ observed, evidence for μ)
- **Self-interaction?**
- **Beyond-the-SM interactions?**

Nature 607, 52 (2022)

Higgs potential and Higgs boson self-coupling

Measured: $m_H \approx 125$ GeV, $\nu \approx 246$ GeV

SM:
$$\mathscr{L}_{Higgs} = \dots -\lambda v^2 H^2 - \lambda v H^3 - \frac{1}{4} \lambda H^4$$

 $\rightarrow \lambda = m_H^2/2\nu^2$ not verified experimentally!

 $\rightarrow \lambda_{HHH} = \lambda \nu$ trilinear Higgs self-coupling constant (can be probed through HH production)

Measurement of λ could help answer questions about:

- Vacuum stability
- Dynamics of electroweak phase transition (connection to electroweak baryogenesis)
- Connection between the SM and a more complex world of particles

. . .

HH production at the LHC

Resonant HH production

gluon-gluon fusion (ggF) $\sigma_{ggF} = 31.05 \text{ fb}$

$$\begin{array}{c} q \\ \blacksquare \\ \blacksquare \\ \blacksquare \\ \end{array} \end{array} \begin{array}{c} q \\ H \\ \blacksquare \\ \end{array}$$

VHH production covered in <u>Matteo's talk</u>

Processes parameterised using coupling modifiers:

 $\kappa_{\lambda} = \lambda_{HHH} / \lambda_{HHH}^{SM}$ $\kappa_{2V} = c_{2V}/c_{2V}^{\rm SM}$

Searches for non-resonant HH production

	bb	WW	π	ZZ	γγ
bb	33%				
WW	25%	4.6%			
ττ	7.4%	2.5%	0.39%		
ZZ	3.1%	1.2%	0.34%	0.076%	
γγ	0.26%	0.10%	0.029%	0.013%	0.0053%

HH branching ratios

Most recent ATLAS results

ATLAS-CONF-2023-071 ($bb\tau\tau$) PRD 108 (2023) 052003 ($b\bar{b}b\bar{b}$) JHEP 01 (2024) 066 ($b\bar{b}\gamma\gamma$) arXiv:2310.11286 ($b\bar{b}\ell\ell$) PLB 843 (2023) 137745 (H + HH combination) ATL-PHYS-PUB-2022-053 (HL-LHC projections)

Most recent CMS results

PRL 129 (2022) 081802 ($b\bar{b}b\bar{b}$ resolved) PRL 131 (2023) 041803 ($b\bar{b}b\bar{b}$ boosted) PLB 842 (2023) 137531 ($b\bar{b}\tau\tau$) JHEP 07 (2023) 095 (multilepton) JHEP 03 (2021) 257 ($b\bar{b}\gamma\gamma$) JHEP 06 (2023) 130 ($b\bar{b}ZZ$) CMS-PAS-HIG-21-005 ($b\bar{b}WW$) CMS-PAS-HIG-21-014 ($WW\gamma\gamma$) Nature 607 (2022) 60 (Comb, HL-LHC projections) CMS-PAS-HIG-23-006 (H + HH combination) CMS-PAS-HIG-22-006 (VHH, $b\bar{b}b\bar{b}$)

Combined results: HH signal strength limit

- Several individual results have been updated since these combinations \star

- Comparable sensitivities between ATLAS and CMS (3.5 - 5 times better than the 36 fb⁻¹ combinations)

Combined results: Constraints on self-coupling

CMS-PAS-HIG-23-006

- Quoted limits are based on the assumption that all other couplings are as predicted by the SM

PLB 843 (2023) 137745

- More generic limits 6% (CMS) and 18% (ATLAS) less stringent $\leftarrow \kappa_V, \kappa_t, \kappa_b, \kappa_\tau (+\kappa_{2V}, \kappa_\mu \text{ for CMS})$ profiled

State-of-the-art: ATLAS $HH \rightarrow bb\tau\tau$

ATLAS-CONF-2023-071

 κ_λ

State-of-the-art: ATLAS $HH \rightarrow bb\gamma\gamma$

JHEP 01 (2024) 066

State-of-the-art: Resolved $HH \rightarrow bbbb$

ATLAS analysis

- *b*-jet pairing based on $\Delta R(b, b)$
- Data-driven background estimation
- 6 ggF + 2 VBF SRs based on $\Delta \eta_{HH}$ and $X_{HH} = f(m_{H1}, m_{H2})$
- 95% CL observed (expected), limit on μ_{HH} : 5.4 (8.1)

CMS analysis

- *b*-jet pairing based on m_{H1} , m_{H2} plane information
- Data-driven background estimation

- ggF and VBF categories split based on a BDT classifier

- ggF categories further split into low and high m_{HH} region
- 95% CL observed (expected) limit on μ_{HH} : 3.9 (7.8)

11

State-of-the-art: CMS boosted $HH \rightarrow bbbb$

large-radius jets (R = 0.8) for $p_{T,H} > \sim 300 \text{ GeV}$ (merged b-jets $\Delta R \sim 2m_H/p_{TH}$)

Strategy

- ParticleNet GNN $H \rightarrow bb$ tagger used to identify the bb-initiated large-radius jets
- Mixture of several triggers, challenging turn-on modelling
- ggF and VBF categories based on the kinematics of non-central jets in the event
- Three ggF SRs defined based on the ParticleNet scores and large-radius jets masses (obtained using a GNN regression)

30 x better than previous result

Expected sensitivity to κ_{λ} similar to the resolved analysis

12

State-of-the-art: CMS boosted $HH \rightarrow bbbb (\kappa_{2V})$

large-radius jets (R = 0.8) for $p_{T,H} > \sim 300 \text{ GeV}$ (merged b-jets $\Delta R \sim 2m_H/p_{T,H}$)

Trigger challenges

- ggF *HH* production via the Higgs self-coupling mechanism yields a very soft p_T^H spectrum
- Challenging especially for $b\bar{b}b\bar{b}$ and $b\bar{b}\tau_{had}\tau_{had}$

Trigger developments for Run 3: $HH \rightarrow b\bar{b}b\bar{b}$

<u>BJetTriggerPublicResults</u>

Improvements w.r.t. Run 2 in ATLAS

- 3-b-jet triggers with asymmetrical pT thresholds
- 2-b-jet triggers with asymmetrical p_T thresholds in the
 "Delayed trigger stream"
- GN2 b-tagging at the trigger level (added in 2023)
- Similar developments for $HH \rightarrow b\bar{b}\tau\tau$

Improvements w.r.t. Run 2 in CMS

- ParticleNet b-tagging at the trigger level
- Lowered threshold on the scalar sum of jet transverse momenta in the event from 360 to 280 GeV using the "Data Parking" strategy

2023 2022 Run 2

HL-LHC projections

projections show it would be excluded

ATLAS + CMS combination could potentially yield 5σ

Resonant *HH* production

Resonant *HH* production

ATLAS

Excess observed at 1.1 TeV. Local (global) significance 3.3 (2.1) σ $b\bar{b}\gamma\gamma$, $b\bar{b}\tau\tau$, $b\bar{b}b\bar{b}$ most sensitive at low, intermediate, high m_{HH}

CMS

No excess

 $b\bar{b}\gamma\gamma$, $b\bar{b}WW$, $b\bar{b}b\bar{b}$ most sensitive at low, intermediate, high m_{HH}

Interpretations, $X \rightarrow HY$ searches

CMSSummaryResultsHIG

Summary and outlook

Impressive Run 2 limits on μ_{HH}

- ATLAS: 2.4 (exp. 2.9) + updates from $b\bar{b}\gamma\gamma$ and $b\bar{b}\tau\tau$
- CMS: 3.4 (exp. 2.5)

Allowed κ_{λ} ranges

- ATLAS: [-0.4, 6.3] (exp. [-1.9, 7.6]) + updates from $b\bar{b}\gamma\gamma$ and $b\bar{b}\tau\tau$
- CMS: [-1.2, 7.5] (exp. [-2.0, 7.7])

Allowed κ_{2V} ranges

- ATLAS: [0.1, 2.0] (exp. [0.0, 2.1]) + updates
- CMS: [0.62,1.4] (exp. [0.66, 1.37]) (boosted $HH \rightarrow b\bar{b}b\bar{b}$)

Run 3 prospects

- Improvements expected due to new triggers, tagging algorithms and further improvements of the analyses

Resonant HH and extended Higgs sector

- Many interesting searches with a discovery potential

Quartic Higgs boson self-coupling much more difficult to probe.

Experiments, however, started considering probing HHH production

