

NLO EW corrections to polarised $W^+ \; W^-$ production and decay at the LHC

Christoph Haitz in collaboration with Ansgar Denner and Giovanni Pelliccioli

Institut für Theoretische Physik 2 Julius-Maximilians-Universität Würzburg

29.02.2024

based on arXiv:2311.16031 (accepted by Physics Letters B)

Motivation

- Polarised processes allow for deep insights into spontaneous symmetry breaking
- Polarised cross-sections are very sensitive to beyond-Standard Model effects
- Polarisation is well suited for tests of the Standard Model

Existing work on polarised W^+W^- production

- $\bullet\,$ Theoretical studies of polarised W^+W^- production in the double-pole approximation
 - ▶ NLO QCD, Denner and Pelliccioli 2020, arXiv:2006.14867 [1]
 - ▶ NNLO QCD Poncelet and Popescu 2021, arXiv:2102.13583 [2]
 - ▶ NLO QCD + parton showers Pelliccioli and Zanderighi 2023, arXiv:2311.05220 [3]
 - ► So far no calculation of the NLO EW corrections
- $\bullet\,$ So far no experimental polarisation studies of W^+W^- production exist
 - Most difficult di-boson production process to observe (2 final state neutrinos)
 - ▶ Feasible with the data from the LHC run-3 and LHC HL-run

- The double-pole approximation is used to define polarised cross-sections
 - Non resonant contributions are removed
 - Polarisation is defined at the amplitude level
 - Polarised amplitude is used to calculate polarised cross-sections

Setup

$p\, p ightarrow W^+ (ightarrow e^+ \, u_e) \, W^- (ightarrow \mu^- \overline{ u}_\mu) + X$

- Calculate NLO EW corrections, Denner et al. 2023, arXiv:2311.16031 [4]
- The W bosons decay into different flavour leptons
- Polarisation is defined in the center-of-mass frame of the two bosons
- Assume perfect bottom-jet veto
- Analog calculation of the NLO EW and QCD corrections. Dao and Le 2023, arXiv:2311.17027 [5]

Phase-space cuts

• Charged leptons are dressed with the anti- k_T algorithm (R = 0.1)

Single lepton cuts	min p_{T,l_1}	25 GeV
	min p_{T,l_2}	20 GeV
	max $ \eta_{e^+} $	2.5
	max $ \eta_{\mu^-} $	2.4
charged lepton pair cuts	min $p_{T,e^+\mu^-}$	30 GeV
	min $M_{e^+\mu^-}$	20 GeV
Missing momentum cut	min $p_{T,mis}$	20 GeV

state	$\sigma_{ m LO}$ [fb]	$\sigma_{ m NLOEW}$ [fb]	$\delta_{\rm EW}$ [%]	$f_{\rm NLO}[\%]$	$\sigma_{ m LO}$ [fb]	$\sigma_{ m NLOEW}$ [fb]	$\delta_{\rm EW}$ [%]	$f_{\rm NLO}[\%]$
		bb̄ exclud	ed			bb includ	ed	
full	254.79(2)	249.88(9)	-1.93	103.5	259.02(2)	253.95(9)	-1.96	103.4
unp.	245.79(2)	241.48(2)	-1.75	100	249.97(2)	245.49(2)	-1.79	100.0
LL	18.752(2)	18.510(2)	-1.30	7.7	21.007(2)	20.663(2)	-1.64	8.4
LT	32.084(3)	32.043(3)	-0.13	13.3	33.190(3)	33.115(3)	-0.23	13.5
ΤL	33.244(5)	33.155(5)	-0.27	13.7	34.352(5)	34.230(5)	-0.35	13.9
ТТ	182.17(2)	177.83(2)	-2.38	73.6	182.56(2)	178.21(3)	-2.38	72.6
int.	-20.46(3)	-20.1(1)	-1.96	-8.3	-21.14(5)	-20.6(2)	-2.45	-8.4

(...) Monte-Carlo uncertainty

state	$\sigma_{ m LO}$ [fb]	$\sigma_{ m NLOEW}$ [fb]	$\delta_{\rm EW}$ [%]	$f_{\rm NLO}[\%]$	$\sigma_{ m LO}$ [fb]	$\sigma_{ m NLOEW}$ [fb]	$\delta_{\rm EW}$ [%]	$f_{\rm NLO}[\%]$	
		bb̄ exclud	ed		bb included				
full	254.79(2)	249.88(9)	-1.93	103.5	259.02(2)	253.95(9)	-1.96	103.4	
unp.	245.79(2)	241.48(2)	-1.75	100	249.97(2)	245.49(2)	-1.79	100.0	
LL	18.752(2)	18.510(2)	-1.30	7.7	21.007(2)	20.663(2)	-1.64	8.4	
LT	32.084(3)	32.043(3)	-0.13	13.3	33.190(3)	33.115(3)	-0.23	13.5	
ΤL	33.244(5)	33.155(5)	-0.27	13.7	34.352(5)	34.230(5)	-0.35	13.9	
TT	182.17(2)	177.83(2)	-2.38	73.6	182.56(2)	178.21(3)	-2.38	72.6	
int.	-20.46(3)	-20.1(1)	-1.96	-8.3	-21.14(5)	-20.6(2)	-2.45	-8.4	

• Difference between full off-shell calculation and the double-pole approximated calculation is $\approx 3.5\%$ (expected Γ_W/M_W)

state	$\sigma_{ m LO}$ [fb]	$\sigma_{ m NLOEW}$ [fb]	$\delta_{\rm EW}$ [%]	$f_{\rm NLO}[\%]$	$\sigma_{ m LO}$ [fb]	$\sigma_{ m NLOEW}$ [fb]	$\delta_{\rm EW}$ [%]	$f_{\rm NLO}[\%]$
		bb̄ exclud	ed			bb includ	ed	
full	254.79(2)	249.88(9)	-1.93	103.5	259.02(2)	253.95(9)	-1.96	103.4
unp.	245.79(2)	241.48(2)	-1.75	100	249.97(2)	245.49(2)	-1.79	100.0
LL	18.752(2)	18.510(2)	-1.30	7.7	21.007(2)	20.663(2)	-1.64	8.4
LT	32.084(3)	32.043(3)	-0.13	13.3	33.190(3)	33.115(3)	-0.23	13.5
ΤL	33.244(5)	33.155(5)	-0.27	13.7	34.352(5)	34.230(5)	-0.35	13.9
TT	182.17(2)	177.83(2)	-2.38	73.6	182.56(2)	178.21(3)	-2.38	72.6
int.	-20.46(3)	-20.1(1)	-1.96	-8.3	-21.14(5)	-20.6(2)	-2.45	-8.4

- Including bottom antibottom induced processes enhances the production of longitudinally polarised W bosons
- Diagrams with t channel top quarks
- Top quark predominantly couples to longitudinally polarised W bosons

Angular separation positron and muon $\cos(\Delta \vartheta_{e^+\mu^-}) = \frac{\vec{p}_{e^+}\vec{p}_{\mu^-}}{|\vec{p}_{e^+}||\vec{p}_{\mu^-}|}$

Angular separation positron and muon $\cos(\Delta \vartheta_{e^+\mu^-}) = \frac{\vec{p}_{e^+}\vec{p}_{\mu^-}}{|\vec{p}_+||\vec{p}_-||\vec{p}$

- $\bullet\,$ Calculated the polarised cross-sections for W^+W^- production at NLO EW
 - \blacktriangleright Used the double-pole approximation to define polarised W⁺W⁻ production
 - Used methods are essential to the calculation of the NLO EW corrections to the decay of other charged resonances
 - * Polarisation studies of vector-boson scattering processes
- Unobservable neutrinos in the final state make the distinction of the polarisation states more difficult
 - Less suitable observables compared to ZZ production

Bibliography I

- A. Denner and G. Pelliccioli, *Polarized electroweak bosons in* W⁺W⁻ *production at the LHC including NLO QCD effects, JHEP* **09** (2020) 164, [arXiv:2006.14867].
- R. Poncelet and A. Popescu, NNLO QCD study of polarised W⁺W⁻ production at the LHC, JHEP 07 (2021) 023, [arXiv:2102.13583].
- G. Pelliccioli and G. Zanderighi, *Polarised-boson pairs at the LHC with NLOPS accuracy*, arXiv:2311.05220.
- A. Denner, C. Haitz, and G. Pelliccioli, *NLO EW corrections to polarised W*⁺*W*⁻ *production and decay at the LHC*, arXiv:2311.16031.
- T. N. Dao and D. N. Le, *NLO electroweak corrections to doubly-polarized* W⁺W⁻ *production at the LHC*, arXiv:2311.17027.

Backup Slides

 Diagrams with and without the wanted (s-channel) resonance contribute to a given process

- Remove non-resonant diagrams in a gauge-independent way
 - This can be achieved by using a pole approximation
 - * Set resonant particles on-shell $\{p_i\} \Rightarrow \{\tilde{p}_i\}$
 - * Conserve some off-shell effects by using the off-shell denominators of the propagators and applying the phase-space cuts to the off-shell momenta

$$M\left(\{\tilde{p}\}, p_{res}^2\right) = M_{\mu, \text{production}}\left(\{\tilde{p}\}\right) \frac{N^{\mu\nu}\left(\{\tilde{p}\}\right)}{p_{res}^2 - m^2 + im\Gamma} M_{\nu, \text{decay}}\left(\{\tilde{p}\}\right)$$

• Numerator of the resonant propagator contains a sum over all polarisation states

$$\sum_{\text{polarisations}} \epsilon^*_\mu \epsilon_
u = -g_{\mu
u}$$
 (Feynman-'t Hooft gauge)

$$M\left(\{\tilde{p}\}, p_{res}^{2}\right) = \sum_{\lambda} M_{\mu, \text{production}}\left(\{\tilde{p}\}\right) \frac{\epsilon_{\lambda}^{\mu*}\left(\{\tilde{p}\}\right) \epsilon_{\lambda}^{\nu}\left(\{\tilde{p}\}\right)}{p_{res}^{2} - m^{2} + im\Gamma} M_{\nu, \text{decay}}\left(\{\tilde{p}\}\right)$$
$$M\left(\{\tilde{p}\}, p_{res}^{2}\right) = \sum_{\lambda} M_{\lambda}\left(\{\tilde{p}\}, p_{res}^{2}\right)$$

• Take the square of the matrix element to calculate the cross-section

$$\frac{M\left(\{\tilde{p}\}, p_{res}^2\right)\Big|^2}{\text{unpolarised}} = \sum_{\lambda} \underbrace{\left| \mathcal{M}_{\lambda}\left(\{\tilde{p}\}, p_{res}^2\right) \right|^2}_{\text{polarisation } \lambda} + \underbrace{\sum_{\lambda \neq \lambda'} \mathcal{M}_{\lambda}^*\left(\{\tilde{p}\}, p_{res}^2\right) \mathcal{M}_{\lambda'}\left(\{\tilde{p}\}, p_{res}^2\right)}_{\text{interferences}}$$

NLO EW corrections with charged resonances

- Diagrams with real radiation from the resonant propagators contribute
- To preserve gauge invariance the decay width of the resonant particle is set to zero everywhere but in the resonant propagators
- This results in additional divergences not present in the full off-shell calculation
 - Divergence is split between the production and decay part
 - Additional local counterterms (massive dipoles) are needed to cancel the infrared divergences

Partial fraction decomposition

$$\mathcal{A}_{\text{prop}} = \mathcal{N}_{\text{prop}}(k_{1}, k_{2}, k_{3}) \frac{1}{s_{123} - M_{W}^{2} + iM_{W}\Gamma_{W}} \cdot \frac{1}{s_{12} - M_{W}^{2} + iM_{W}\Gamma_{W}}$$
$$= -\frac{\mathcal{N}_{\text{prop}}(k_{1}, k_{2}, k_{3})}{s_{13} + s_{23}} \left(\frac{1}{s_{123} - M_{W}^{2} + iM_{W}\Gamma_{W}} - \frac{1}{s_{12} - M_{W}^{2} + iM_{W}\Gamma_{W}}\right)$$

• Use a partial fraction decomposition to split the divergence between the process where the photon is emitted from the production and from the decay amplitude

Partial fraction decomposition

 \bullet Project \textit{s}_{12} on-shell \rightarrow divergence is only in the production amplitude

$$ilde{\mathcal{A}}_{ ext{prop}}^{(2)} = rac{1}{s_{12} - M_{ ext{W}}^2 + i M_{ ext{W}} \Gamma_{ ext{W}}} \left[rac{\mathcal{N}_{ ext{prop}}(ilde{k}_1^{(12)}, ilde{k}_2^{(12)}, ilde{k}_3^{(12)})}{ ilde{s}_{13}^{(12)} + ilde{s}_{23}^{(12)}}
ight]$$

- Project s_{123} on-shell \rightarrow divergence is only in the decay amplitude $\tilde{\mathcal{A}}_{\text{prop}}^{(3)} = \frac{1}{s_{123} - M_{\text{W}}^2 + iM_{\text{W}}\Gamma_{\text{W}}} \left[-\frac{\mathcal{N}_{\text{prop}}(\tilde{k}_1^{(123)}, \tilde{k}_2^{(123)}, \tilde{k}_3^{(123)})}{\tilde{s}_{13}^{(123)} + \tilde{s}_{23}^{(123)}} \right]$
- Massive particle counterterms can be used to cancel the divergences in the production and decay amplitude

state	$\sigma_{ m LO}$ [fb]	$\sigma_{ m NLOEW}$ [fb]	$\delta_{\rm EW}$ [%]	$f_{\rm NLO}[\%]$	$\sigma_{ m LO}$ [fb]	$\sigma_{ m NLOEW}$ [fb]	$\delta_{\rm EW}$ [%]	$f_{\rm NLO}[\%]$
		$b\bar{b},\gammab,\gamma\bar{b}$ ex	cluded		$b\bar{b}$ included, γb , $\gamma \bar{b}$ excluded			
full	254.79(2)	249.88(9)	-1.93	103.5	259.02(2)	253.95(9)	-1.96	103.4
unp.	245.79(2)	241.48(2)	-1.75	100	249.97(2)	245.49(2)	-1.79	100.0
LL	18.752(2)	18.510(2)	-1.30	7.7	21.007(2)	20.663(2)	-1.64	8.4
LT	32.084(3)	32.043(3)	-0.13	13.3	33.190(3)	33.115(3)	-0.23	13.5
ΤL	33.244(5)	33.155(5)	-0.27	13.7	34.352(5)	34.230(5)	-0.35	13.9
ТТ	182.17(2)	177.83(2)	-2.38	73.6	182.56(2)	178.21(3)	-2.38	72.6
int.	-20.46(3)	-20.1(1)	-1.96	-8.3	-21.14(5)	-20.6(2)	-2.45	-8.4
	$b\bar{b}, \gamma b, \gamma \bar{b}$ included							
full	259.02(2)	265.59(9)	+2.54	-				

(...) Monte-Carlo uncertainty

state	$\sigma_{ m LO}$ [fb]	$\sigma_{ m NLOEW}$ [fb]	$\delta_{\rm EW}$ [%]	$f_{\rm NLO}[\%]$	$\sigma_{ m LO}$ [fb]	$\sigma_{ m NLOEW}$ [fb]	$\delta_{\rm EW}$ [%]	$f_{\rm NLO}[\%]$
		$b\bar{b},\gammab,\gamma\bar{b}$ ex	cluded		$b\bar{b}$ included, γb , $\gamma \bar{b}$ excluded			
full	254.79(2)	249.88(9)	-1.93	103.5	259.02(2)	253.95(9)	-1.96	103.4
unp.	245.79(2)	241.48(2)	-1.75	100	249.97(2)	245.49(2)	-1.79	100.0
LL	18.752(2)	18.510(2)	-1.30	7.7	21.007(2)	20.663(2)	-1.64	8.4
LT	32.084(3)	32.043(3)	-0.13	13.3	33.190(3)	33.115(3)	-0.23	13.5
ΤL	33.244(5)	33.155(5)	-0.27	13.7	34.352(5)	34.230(5)	-0.35	13.9
ΤT	182.17(2)	177.83(2)	-2.38	73.6	182.56(2)	178.21(3)	-2.38	72.6
int.	-20.46(3)	-20.1(1)	-1.96	-8.3	-21.14(5)	-20.6(2)	-2.45	-8.4
	$b\bar{b}, \gamma b, \gamma \bar{b}$ included							
full	259.02(2)	265.59(9)	+2.54	-				

• Difference between full off-shell calculation and the double-pole approximated calculation is $\approx 3.5\%$ (expected Γ_W/M_W)

state	$\sigma_{ m LO}$ [fb]	$\sigma_{ m NLOEW}$ [fb]	$\delta_{\rm EW}$ [%]	$f_{\rm NLO}[\%]$	$\sigma_{ m LO}$ [fb]	$\sigma_{ m NLOEW}$ [fb]	$\delta_{\rm EW}$ [%]	$f_{\rm NLO}[\%]$
		$b\bar{b},\gammab,\gamma\bar{b}$ ex	cluded		b	$ar{b}$ included, \gammab,γ	b excluded	
full	254.79(2)	249.88(9)	-1.93	103.5	259.02(2)	253.95(9)	-1.96	103.4
unp.	245.79(2)	241.48(2)	-1.75	100	249.97(2)	245.49(2)	-1.79	100.0
LL	18.752(2)	18.510(2)	-1.30	7.7	21.007(2)	20.663(2)	-1.64	8.4
LT	32.084(3)	32.043(3)	-0.13	13.3	33.190(3)	33.115(3)	-0.23	13.5
TL	33.244(5)	33.155(5)	-0.27	13.7	34.352(5)	34.230(5)	-0.35	13.9
TT	182.17(2)	177.83(2)	-2.38	73.6	182.56(2)	178.21(3)	-2.38	72.6
int.	-20.46(3)	-20.1(1)	-1.96	-8.3	-21.14(5)	-20.6(2)	-2.45	-8.4
	$b\bar{b}, \gamma b, \gamma \bar{b}$ included							
full	259.02(2)	265.59(9)	+2.54	-				

- Including the photon bottom/antibottom induced processes adds a background from top W production
- This background would have to be subtracted with a fit in a polarisation analysis

state	$\sigma_{ m LO}$ [fb]	$\sigma_{ m NLOEW}$ [fb]	$\delta_{\rm EW}$ [%]	$f_{\rm NLO}[\%]$	$\sigma_{ m LO}$ [fb]	$\sigma_{ m NLOEW}$ [fb]	$\delta_{\rm EW}$ [%]	$f_{\rm NLO}[\%]$
		$b\bar{b},\gammab,\gamma\bar{b}$ ex	cluded		$b\bar{b}$ included, γb , $\gamma \bar{b}$ excluded			
full	254.79(2)	249.88(9)	-1.93	103.5	259.02(2)	253.95(9)	-1.96	103.4
unp.	245.79(2)	241.48(2)	-1.75	100	249.97(2)	245.49(2)	-1.79	100.0
LL	18.752(2)	18.510(2)	-1.30	7.7	21.007(2)	20.663(2)	-1.64	8.4
LT	32.084(3)	32.043(3)	-0.13	13.3	33.190(3)	33.115(3)	-0.23	13.5
TL	33.244(5)	33.155(5)	-0.27	13.7	34.352(5)	34.230(5)	-0.35	13.9
ТТ	182.17(2)	177.83(2)	-2.38	73.6	182.56(2)	178.21(3)	-2.38	72.6
int.	-20.46(3)	-20.1(1)	-1.96	-8.3	-21.14(5)	-20.6(2)	-2.45	-8.4
	$b\bar{b}, \gamma b, \gamma \bar{b}$ included							
full	259.02(2)	265.59(9)	+2.54	-				

- NLO EW corrections are negative
- Corrections are smaller for the mixed polarisation states

state	$\sigma_{ m LO}$ [fb]	$\sigma_{ m NLOEW}$ [fb]	$\delta_{\rm EW}$ [%]	$f_{\rm NLO}[\%]$	$\sigma_{ m LO}$ [fb]	$\sigma_{ m NLOEW}$ [fb]	$\delta_{\rm EW}$ [%]	$f_{\rm NLO}[\%]$
		$b\bar{b},\gammab,\gamma\bar{b}$ ex	cluded		$b\bar{b}$ included, γb , $\gamma \bar{b}$ excluded			
full	254.79(2)	249.88(9)	-1.93	103.5	259.02(2)	253.95(9)	-1.96	103.4
unp.	245.79(2)	241.48(2)	-1.75	100	249.97(2)	245.49(2)	-1.79	100.0
LL	18.752(2)	18.510(2)	-1.30	7.7	21.007(2)	20.663(2)	-1.64	8.4
LT	32.084(3)	32.043(3)	-0.13	13.3	33.190(3)	33.115(3)	-0.23	13.5
ΤL	33.244(5)	33.155(5)	-0.27	13.7	34.352(5)	34.230(5)	-0.35	13.9
ΤT	182.17(2)	177.83(2)	-2.38	73.6	182.56(2)	178.21(3)	-2.38	72.6
int.	-20.46(3)	-20.1(1)	-1.96	-8.3	-21.14(5)	-20.6(2)	-2.45	-8.4
	$b\bar{b}, \gamma b, \gamma \bar{b}$ included							
full	259.02(2)	265.59(9)	+2.54	-				

- Including bottom antibottom induced processes enhances the production of longitudinally polarised W bosons
- Diagrams with t channel top quarks
- Top quark predominantly couples to longitudinally polarised W bosons

state	$\sigma_{ m LO}$ [fb]	$\sigma_{ m NLOEW}$ [fb]	$\delta_{\rm EW}$ [%]	$f_{\rm NLO}[\%]$	$\sigma_{ m LO}$ [fb]	$\sigma_{ m NLOEW}$ [fb]	$\delta_{\rm EW}$ [%]	$f_{\rm NLO}[\%]$
		$b\bar{b},\gammab,\gamma\bar{b}$ ex	cluded		$b\bar{b}$ included, γb , $\gamma \bar{b}$ excluded			
full	254.79(2)	249.88(9)	-1.93	103.5	259.02(2)	253.95(9)	-1.96	103.4
unp.	245.79(2)	241.48(2)	-1.75	100	249.97(2)	245.49(2)	-1.79	100.0
LL	18.752(2)	18.510(2)	-1.30	7.7	21.007(2)	20.663(2)	-1.64	8.4
LT	32.084(3)	32.043(3)	-0.13	13.3	33.190(3)	33.115(3)	-0.23	13.5
TL	33.244(5)	33.155(5)	-0.27	13.7	34.352(5)	34.230(5)	-0.35	13.9
ΤT	182.17(2)	177.83(2)	-2.38	73.6	182.56(2)	178.21(3)	-2.38	72.6
int.	-20.46(3)	-20.1(1)	-1.96	-8.3	-21.14(5)	-20.6(2)	-2.45	-8.4
	$bar{b}, \gamma b, \gamma ar{b}$ included							
full	259.02(2)	265.59(9)	+2.54	-				

- Sizeable contribution from the interference of longitudinally and transversely polarised W bosons
- Transverse momentum cuts on the charged leptons prevent the cancellation of the interferences

Positron decay angle $\cos\left(\vartheta_{e^+}^{*,\mathrm{CM}}\right) = \frac{\vec{p}_{e^+}^* \cdot \vec{p}_{e^+\nu_e}^{\mathrm{CM}}}{|\vec{p}_{e^+}^*||\vec{p}_{e^+\nu_e}^{\mathrm{CM}}|}$

Positron decay angle $\cos\left(\vartheta_{e^+}^{*,\mathrm{CM}}\right) = \frac{\vec{p}_{e^+}^* \cdot \vec{p}_{e^+\nu_e}^{\mathrm{CM}}}{|\vec{p}_{e^+}^*||\vec{p}_{e^+\nu_e}^{\mathrm{CM}}|}$

Positron decay angle $\cos\left(\vartheta_{e^+}^{*,\mathrm{CM}}\right) = \frac{\vec{p}_{e^+}^* \cdot \vec{p}_{e^+\nu_e}^{\mathrm{CM}}}{|\vec{p}_{e^+}^*||\vec{p}_{e^+\nu_e}^{\mathrm{CM}}|}$ NLO EW / LO (with bb) $pp \rightarrow e^+ v_e \mu^- \bar{v}_{\mu} + X, \sqrt{s} = 13.6 \text{ TeV}$: fiducial setup 1.04 NLO EW, with bb 160 1.02 140 1.00 NLO EW corrections only affect da/dcosθ°;^{CM} [fb] the shape close to the edge 0.96 with bb / without bb (NLO EW) 80 1.15 60 1.10 sum of pol ---- vb. vb 40 1.05

Positron decay angle $\cos\left(\vartheta_{e^+}^{*,\mathrm{CM}}\right) = \frac{\vec{p}_{e^+}^* \cdot \vec{p}_{e^+\nu_e}^{\mathrm{CM}}}{|\vec{p}_{e^+}^*||\vec{p}_{e^+\nu_e}^{\mathrm{CM}}|}$

Christoph Haitz (Univ. of Würzburg)

 W^+W^- production

