

Mareen Hoppe¹, Marek Schönherr², Frank Siegert¹, Max Stange¹

¹ Institute of Nuclear and Particle Physics, Technische Universität Dresden ² Institute for Particle Physics Phenomenology, Durham University

Zinonos: Tests of the Standard Model of Particles. https://www.mpp.mpg.de/~zinonos/material/lecture10.pdf

Polanized cnoss sections for vector boson production with Shenpa

1st COMETA general meeting Izmir, February 29, 2024

based on the work published in arXiv: <u>2310.14803</u>

Introduction

Why vector boson polarization?

Vector boson polarization measurements can probe the electroweak sector:

- concrete mechanism of EWSB ↔ longitudinal polarization
- EW gauge symmetry structure ↔ triple & quartic gauge couplings

How to measure vector boson polarization?

Fit with polarization templates from simulation

$$\frac{\mathrm{d}\sigma}{\mathrm{d}X} = f_L \frac{\mathrm{d}\sigma_L}{\mathrm{d}X} + f_R \frac{\mathrm{d}\sigma_R}{\mathrm{d}X} + f_0 \frac{\mathrm{d}\sigma_0}{\mathrm{d}X} \left(+f_{int.} \frac{\mathrm{d}\sigma_{int.}}{\mathrm{d}X} \right)$$

10³

C.Bittrich, PhD TU Dresden 2020

10

J. Manjarrés Ramos, Talk at LHCP2022

104

105

E_{cm} in GeV

Polarized cross sections for vector boson production with Sherpa Institute of Nuclear and Particle physics / / Mareen Hoppe 1st COMETA General Meeting // February, 29 2024

several private tools, see e.g. talk of Rene Poncelet

public codes:

PHANTOM: a Monte Carlo event generator for six parton final states at high energy colliders.

Alessandro Ballestrero^a, Aissa Belhouari^c, Giuseppe Bevilacqua^{a,b} Vladimir Kashkan^{a,b} Ezio Maina^{a,b,1}

^aINFN, Sezione di Torino, Italu ^bDipartimento di Fisica Teorica, Università di Torino, Italy ^c The Abdus Salam International Center for Theoretical Physics, Trieste, Italy

truncated propagator

nwa

- PHANTOM: 2->6 processes @ LO+PS [A. Ballestrero et al. 2008, 2017]
- **mc5** amcento: arbitrary processes @ LO, 0 PS matching, multi-jet merging [D. Buarque Franzosi et al. 2020]
- POWHEC-BOX-RES: diboson processes @NLO QCD+PS [G. Pelliccioli, G. Zanderighi 2023]

Shenpa: arbitrary processes @nLO QCD, PS matching, multi-jet merging Ο THIS TALK [MH, M, Schönherr, F, Siegert 2023]

Polarized cross sections for vector boson production with Sherpa Institute of Nuclear and Particle physics / / Mareen Hoppe 1st COMETA General Meeting // February, 29 2024

Slide 3

DPA

Calculation of polarized cross sections

On-shell approximation: extended narrow-width approximation

$$rac{1}{\left(q^2-m_V^2
ight)^2+\Gamma_V^2m_V^2}
ightarrow rac{\pi\delta(q^2-m_V^2)}{\Gamma_Vm_V}$$

- spin correlation algorithm [Richardson 2001] to preserve spin 0 correlations between VB production & decay
- off-shell effects via mass smearing of on-shell vector boson states 0

Algorithm for polarized cross sections: •

- simulation essentially unpolarized in NWA
- [MH. M. Schönherr, F Siegert 2023

<u>[H</u>öche et

al. 2014

- polarization fractions calculated on top
 - polarized amplitudes from spin correlation algorithm
 - keep whole amplitude tensor
 - multiplied by event XS
 - output as additional event weights

Nominal or variation name	XS [pb]
Nominal	0.00636840738801
PolWeight COM.W+.+ W+.+	0.00060858451764
PolWeight COM.W+.+ W+	0.00078445056672
PolWeight COM.W+.+ W+.0	0.00037696877407
PolWeight COM.W+ W+.+	0.00077432059972
PolWeight COM.W+ W+	0.00148317472445
PolWeight COM.W+ W+.0	0.00063413615306
PolWeight COM.W+.0 W+.+	0.00037938319197
PolWeight COM.W+.0 W+	0.00063363366425
PolWeight COM.W+.0 W+.0	0.00065521961374
PolWeight COM.W+.0 W+.T	0.00101508799740
PolWeight COM.W+.0 W+.t	0.00101301685622
PolWeight COM.W+.T W+.0	0.00101857271726
PolWeight COM.W+.T W+.T	0.00364953844553
PolWeight COM.W+.t W+.0	0.00101110492712
PolWeight_COM.W+.t_W+.t	0.00365053040852

Features

Fully-realistic simulations for

arbitrary processes with intermediate VBs with

- dl polarizations in one run using weights
- direct calculation of interference templates
- multiple polarization bases in one run
 - laboratory frame
 - center of mass frame of arbitrary combination of initial- / final state particles
 - parton-parton frame
 - easily extendable, if necessary

Including QCD effects matched to PS

based on Sherpa's MC@NLO [S. Höche et al. 2012]

$$\sigma_{\mathrm{MC}@\mathrm{NLO}}^{\mathrm{NLO}} = \underbrace{\int \mathrm{d}\tilde{\Phi}_n \bar{B}_n^{\mathcal{A}}(\tilde{\Phi}_n) \Big[\bar{\Delta}^{\mathcal{A}}(t_0) + \int_{t_0} \mathrm{d}\tilde{\Phi}_1 \frac{D_n^{\mathcal{A}}(\tilde{\Phi}_{n+1})}{B_n(\tilde{\Phi}_n)} \bar{\Delta}^{\mathcal{A}}(t) \Big]}_{=:\sigma_{\mathbb{H}}} + \underbrace{\int \mathrm{d}\tilde{\Phi}_{n+1} H_n^{\mathcal{A}}(\tilde{\Phi}_{n+1})}_{=:\sigma_{\mathbb{H}}} \underbrace{$$

- unpolarized event XS fully NLO QCD accurate
- different amplitudes used for polarization fraction calculation in dependence of event type:
 - H-events & resolved 8-events: real-emission amplitude
 - Unresolved 8-events: Born amplitude

-> virtual, ultra-soft & ultra-collinear emission effects neglected for polarization fractions

dominant NLO effects captured through real emission MEs

nLO+P8 vs. full fixed NLO -WZ-Diboson production

Comparison with NLO QCD fixed order calculation [A. Denner & G. Pelliccioli 2021]

can reproduce even non-trival NLO effects!

Polarized cross sections for vector boson production with Sherpa Institute of Nuclear and Particle physics / / Mareen Hoppe 1st COMETA General Meeting // February, 29 2024

Slide 7

litenature

Sherpa

nLO+P8 vs. full fixed NLO -WZ-Diboson production

Comparison with NLO QCD fixed order calculation [A. Denner & G. Pelliccioli 2021]

 $p p \rightarrow e^+ v_e \mu^+ \mu^- + X @$ NLO QCD, $\sqrt{s} = 13$ TeV: fiducial region

litenature

Sherpa

Higher order polarized cross sections for UBS processes

• Calculation of full NLO effects to VBS processes very challenging:

- currently only available at fixed order, unpolarized, e.g. [<u>B.</u> <u>Biedermann et al. 2017, S. Dittmaier et</u> <u>al. 2023]</u>
- polarized cross sections only @ LO [A. Ballestrero et al. 2020, 2017, 2019]

With the new framework first study in **W⁺W⁺jj** :

LO+1j menged calculation

First higher order polarized cross sections for W+W+jj

	unpol [fb]	LL [fb]	Fraction [%]	LT+TL [fb]	Fraction [%]	TT [fb]	Fraction [%]
£O+P8	2.459	0.237	9.63	0.765	31.12	1.497	60.88
LO+1j VBS approx.	2.302	0.224	9.73	0.716	31.10	1.399	60.77

Only sub-percent level effect of QCD corrections on integrated polarization fractions ...

First higher order polarized cross sections for W⁺W⁺jj Preliminary results

... differential polarization fractions!

Polarized cross sections for vector boson production with Sherpa Institute of Nuclear and Particle physics / / Mareen Hoppe 1st COMETA General Meeting // February, 29 2024

Summary and Outlook

- ✓ first implementation of polarized cross sections in <u>Sherpa</u>
- ✓ higher order QCD corrections @nLO + PS & via multijet-merging
- → first fully-realistic VB polarization samples including higher order QCD effects for VBS processes

https://www.zeppelinschule-speyer.de/ausblick-auf-di e-zeit-nach-pfingsten/

What comes next ...

- Extension to NLO QCD and approximate NLO EW
- Applications in phenomenological analyses: BSM studies (UFO), full NLO effects for VBS processes

Polarized cross sections for vector boson production with Sherpa Institute of Nuclear and Particle physics / / Mareen Hoppe 1st COMETA General Meeting // February, 29 2024

Summary and Outlook

- ✓ first implementation of polarized cross sections in <u>Sherpa</u>
- ✓ higher order QCD corrections @nLO + PS & via multijet-merging
- → first fully-realistic VB polarization samples including higher order QCD effects for VBS processes

https://www.zeppelinschule-speyer.de/ausblick-auf-di e-zeit-nach-pfingsten/

What comes next ...

 Extension to NLO QCD and approximate NLO EW
 Applications in phenomenological analyses: BSM studies (UFO), full NLO effects for VBS processes

Polarized cross sections for vector boson production with Sherpa Institute of Nuclear and Particle physics / / Mareen Hoppe 1st COMETA General Meeting // February, 29 2024

Polanized cross sections from fully exclusive events

truncated propagator

Polarization templates

- Interference between different polarizations
- Polarization fractions are frame dependent
- Separation of polarization not for all diagrams
- -> approximations necessary

$$= f_L \frac{\mathrm{d}\sigma_L}{\mathrm{d}X} + f_R \frac{\mathrm{d}\sigma_R}{\mathrm{d}X} + f_0 \frac{\mathrm{d}\sigma_0}{\mathrm{d}X} \left(+ f_{int.} \frac{\mathrm{d}\sigma_{int.}}{\mathrm{d}X} \right)$$

5

LO+PS Tools

- PHANTOM: 2->6 processes @ LO+PS [A. Ballestrero et al. 2008, 2017]
- MG5_aMC@NLO: arbitrary processes @ LO, PS matching, multi-jet merging [D. Buarque Franzosi et al. 2020]

Higher orders

nonresonant

nwa

- POWHEG-BOX-RES: diboson processes @NLO QCD+PS [G. Pelliccioli, G. Zanderighi 2023]

 $d\sigma$ $\overline{\mathrm{d}X}$

- SHERPA: arbitrary processes @nLO QCD, PS matching, multi-jet merging [MH, M. Schönherr, F. Siegert 2023]

DPA

On-shell Approximation in Shenpa [S. Höche et al. 2014]

- extended narrow-width approximation:
 - spin correlations preserved
 - off-shell effects via mass smearing of on-shell vector boson states

INSTITUTE OF

NUCLEAR AND

PARTICLE PHYSICS

01	Simulation of unpolarized production process	$ \mathcal{M}^{\mathcal{P}} ^2 = \sum_{\lambda_1\lambda_n} \mathcal{M}^{\mathcal{P}}_{\lambda_1\lambda_n} \mathcal{M}^{*\mathcal{P}}_{\lambda_1\lambda_n}$
02	Recalculation of the production amplitude tensor	$ \mathcal{M}^{\mathcal{P}} ^{2}_{\lambda_{1}\lambda_{n};\lambda'_{1}\lambda'_{n}} = \mathcal{M}^{\mathcal{P}}_{\lambda_{1}\lambda_{n}}\mathcal{M}^{*\mathcal{P}}_{\lambda'_{1}\lambda'_{n}}$
03	Spin correlation algorithm generates decay chain, decay matrices [<u>Richardson 2001</u>]	$\mathcal{D}_{\lambda_{\mathcal{A}}\lambda_{\mathcal{A}}'}=rac{1}{\mathcal{N}_{\mathcal{D}}}\mathcal{M}_{\lambda_{\mathcal{A}}}^{\mathcal{D}}\mathcal{M}_{\lambda_{\mathcal{A}}'}^{\mathcal{D}*}$
04	Mass Smearing of the intermediate vector bosons according to Breit-Wigner distribution	BW ~ $\frac{1}{(p^2 - M^2)^2 + \Gamma^2 M^2}$
05	Reweighting of production cross section with decay branching ratio	$ \mathcal{M}^{\mathrm{NWA}} ^2 = \mathcal{M}^{\mathcal{P}} ^2 \times \mathrm{BR}$

Polarized cross sections for vector boson production with Sherpa Institute of Nuclear and Particle physics / / Mareen Hoppe 1st COMETA General Meeting // February, 29 2024

Spin-Correlation Algorithm

• here only for VB decaying into stable leptons

Durham University

Polarized cross sections for vector boson production with Sherp: Institute of Nuclear and Particle physics / / Mareen Hoppe 1st COMETA General Meeting // February, 29 2024

Key part of the polarization framework: Transformation of the matrix elements

- Two ways to change polarization definition in matrix elements:
 - a priori: change polarization definition directly in matrix element generator
 - a posteriori: transformation of calculated production tensor, decay matrices
- change of basis = basis transformation of polarization vectors

Matching to parton shower: S-MC@NLO

<u>S. Höche et. al. 2012</u> S. Frixione & B.R. Webber, 2002]

Idea: Double counting eliminated by subtraction of the shower contribution at fixed order from contributions of the hard process at higher orders

 Separation of real correction into IR-singular and IR-regular term:

$$R_n = D_n^{\mathcal{A}} + H_n^{\mathcal{A}}$$

• NLO QCD cross section:

$$\sigma^{\rm NLO} = \int \mathrm{d}\tilde{\Phi}_n \bar{B}^{\mathcal{A}}(\tilde{\Phi}_n) + \int \mathrm{d}\tilde{\Phi}_{n+1} H^{\mathcal{A}}(\tilde{\Phi}_{n+1})$$

matched NLO QCD cross section up to first emission:

$$\sigma_{\mathrm{MC@NLO}}^{\mathrm{NLO}} = \underbrace{\int \mathrm{d}\tilde{\Phi}_n \bar{B}_n^{\mathcal{A}}(\tilde{\Phi}_n) \Big[\bar{\Delta}^{\mathcal{A}}(t_0) + \int_{t_0} \mathrm{d}\tilde{\Phi}_1 \frac{D_n^{\mathcal{A}}(\tilde{\Phi}_{n+1})}{B_n(\tilde{\Phi}_n)} \bar{\Delta}^{\mathcal{A}}(t) \Big]}_{=:\sigma_{\mathbb{H}}} + \underbrace{\int \mathrm{d}\tilde{\Phi}_{n+1} H_n^{\mathcal{A}}(\tilde{\Phi}_{n+1})}_{=:\sigma_{\mathbb{H}}} \underline{\Delta}^{\mathcal{A}}(t) = \underbrace{\int \mathrm{d}\tilde{\Phi}_n H_n^{\mathcal{A}}(\tilde{\Phi}_n)}_{=:\sigma_{\mathbb{H}}} \underline{\Delta}^{\mathcal{A}}(t) = \underbrace{\int \mathrm{d}\tilde{\Phi}_n H_n^{\mathcal{A}}(\tilde{\Phi}_{n+1})}_{=:\sigma_{\mathbb{H}}} \underline{\Delta}^{\mathcal{A}}(t) = \underbrace{\int \mathrm{d}\tilde{\Phi}_n H_n^{\mathcal{A}}(\tilde{\Phi}_n)}_{=:\sigma_{\mathbb{H}}} \underline{\Delta}^{\mathcal{A}}(t) = \underbrace{\int \mathrm{d}\tilde{\Phi}_n H_n^{\mathcal{A}}(t) = \underbrace{\int \mathrm{d}\tilde{\Phi}_n H$$

applied to expectation value of an IR-safe observable O

Polarized cross sections for vector boson production with Sherpa Institute of Nuclear and Particle physics / / Mareen Hoppe 1st COMETA General Meeting // February, 29 2024

Polanized cnoss sections matched to PS - MC@NLO [S. Höche et al. 2012]

Idea MC@NLO: Double counting eliminated by subtraction of the shower contribution at fixed order from contributions of the hard process at higher orders

$$\sigma_{\mathrm{MC@NLO}}^{\mathrm{NLO}} = \underbrace{\int \mathrm{d}\tilde{\Phi}_n \bar{B}_n^{\mathcal{A}}(\tilde{\Phi}_n) \Big[\bar{\Delta}^{\mathcal{A}}(t_0) + \int_{t_0} \mathrm{d}\tilde{\Phi}_1 \frac{D_n^{\mathcal{A}}(\tilde{\Phi}_{n+1})}{B_n(\tilde{\Phi}_n)} \bar{\Delta}^{\mathcal{A}}(t) \Big]}_{=:\sigma_{\mathbb{S}}} + \underbrace{\int \mathrm{d}\tilde{\Phi}_{n+1} H_n^{\mathcal{A}}(\tilde{\Phi}_{n+1})}_{=:\sigma_{\mathbb{H}}}$$

<u>Resolved S-events</u>

- universal-soft-collinear radiation pattern in PS approximation above PS IR cutoff
- construction from complete <u>real emission</u> amplitude

virtual, ultra-soft & ultra-collinear emission effects neglected for polarisation fractions

<u>Unresolved S-events</u>

- emissions below PS IR cutoff
- virtual corrections
- construction from <u>Born</u> amplitude

H-events

- hard, well-separated emissions beyond PS starting scale
- process-specific corrections to universal soft-collinear emission pattern
- construction from complete <u>real emission</u> amplitude

nLO+PS (Shenpa) vs. full NLO+PS (POWHEG+PYTHIA)

Literature: [G. Pelliccioli, G. Zanderighi 2023]

ZZ-Production

	$\sigma_{\rm NLO+PS}$ [fb]	Fraction [%]	$\sigma_{\rm nLO+PS}$ [fb]	Fraction [%]	$\frac{\text{nLOPS}}{\text{NLOPS}}$ –	. 1 [%]
					XS	Frac
unpol	14.02(1)	100	14.017(17)	100	-0.0	
LL	0.819(1)	5.84	0.8404(12)	5.996(11)	+2.6	+2.7
LT + TL	3.565(3)	25.43	3.6177(39)	25.81(4)	+1.5	+1.5
тт	9.47(1)	67.52	9.370(14)	66.85(13)	-1.1	-1.0
int	0.171	1.28	0.1886(24)	1.345(17)	+10.3	+5.1

Polarized cross sections for vector boson production with Sherpa Institute of Nuclear and Particle physics / / Mareen Hoppe 1st COMETA General Meeting // February, 29 2024

WZ - LO + 1 jet menged with PS compared with (n)LO+PS -COM

small merging scale (20-40 GeV):

good
approximation to
nLO+PS result
no large
dependency on
concrete scale
value

larger merging scale:

- transition to LO behavior

Polarized cross sections for vector boson production with Sherpa Institute of Nuclear and Particle physics / / Mareen Hoppe 1st COMETA General Meeting // February, 29 2024

WZ - LO + 1 jet menged with P8 compared with (n)LO+P8

Polarized cross sections for vector boson production with Sherpa Institute of Nuclear and Particle physics / / Mareen Hoppe 1st COMETA General Meeting // February, 29 2024

WZ - LO + 1 jet menged with PS compared with (n)LO+PS

Polarized cross sections for vector boson production with Sherpa Institute of Nuclear and Particle physics / / Mareen Hoppe 1st COMETA General Meeting // February, 29 2024

WZ - LO + 1 jet menged with P8 compared with (n)LO+P8

Polarized cross sections for vector boson production with Sherpa Institute of Nuclear and Particle physics / / Mareen Hoppe 1st COMETA General Meeting // February, 29 2024

First higher order polarized cross sections for W+W+jj **Preliminary results**

... differential polarization fractions!

Polarized cross sections for vector boson production with Sherpa Institute of Nuclear and Particle physics / / Mareen Hoppe 1st COMETA General Meeting // February, 29 2024

Slide 26

INSTITUTE OF

NUCLEAR AND

PARTICLE PHYSICS