Taggers for boosted HH searches within the ATLAS experiment

Laboratoire de Physique des 2 Infinis

Luca Cadamuro

IJCLab, CNRS/IN2P3, Université de Paris-Saclay

February 28th, 2024 1st COMETA general meeting - İzmir

Luca Cadamuro (IJCLab - CNRS/IN2P3)

Taggers for boosted HH searches within the ATLAS experiment

Gluon fusion

SM HH signal Self-coupling (κ_{λ}), EFT

Vector boson fusion

VVHH coupling (κ_{2ν})

Resonant production

New heavy states

2 \sim

Boosted HH in ggF production

Tiny phase space portion that can provide advantageous S/B separation

Luca Cadamuro (IJCLab - CNRS/IN2P3)

Taggers for boosted HH searches within the ATLAS experiment

Boosted HH in VBF production

$$\mathscr{A}\left(V_L V_L \to \mathrm{HH}\right) \simeq \frac{\hat{s}}{v^2} \left(\kappa_{2V} - \kappa_V^2\right)$$

EPJC 77 (2017) 7, 481

Very large changes in m_{HH} with $O(1) \kappa_{2V}$ variations because of alterations in the cancellations from electroweak doublet structure

Luca Cadamuro (IJCLab - CNRS/IN2P3)

Taggers for boosted HH searches within the ATLAS experiment

(13 TeV)

Boosted HH in resonant production

Boosted topologies naturally dominant at high m_x

Luca Cadamuro (IJCLab - CNRS/IN2P3)

Taggers for boosted HH searches within the ATLAS experiment

- Resonant searches span a broad m_x range
- High mass resonances result in highly boosted H bosons
- Boosted H tagging is fundamental to explore $m_X > 1 \text{ TeV}$

SM HH signal Self-coupling (κ_{λ}), EFT

Vector boson fusion

VVHH coupling (κ_{2ν})

Resonant production

New heavy states

Which final state for boosted HH?

- HH searches span a broad set of final states
- Boosted topologies usually identify a small portion of the phase space (ggF) or feature small cross sections (VBF, resonant)
- High BR channels with hadrons most suited for the application of boosted tagging in HH

 $H \rightarrow bb/WW/\tau\tau$ final states are particularly interesting for boosted HH searches

Boosted W final states were not yet explored in an ATLAS HH search and hence boosted W tagging is not covered here.

Several boosted W algorithms exist and could be applied for this topology.

Luca Cadamuro (IJCLab - CNRS/IN2P3)

Boosted tagging inputs : UFO jets

- Unified Flow Objects jets combine optimally calorimeter and tracker information (EPJC <u>81 (2021) 4, 334</u>)
 - Particle Flow Objects (PFO) : particle energy estimation from track subtracted from calo cluster
 - Track-Calo Cluster (TCC) : energy from calo cluster + η , ϕ information from tracks
 - dedicated pileup mitigation and jet grooming

Input constituents as close as possible to individual physics particles

 $\Delta R \sim 2m/p_T \rightarrow$ for Higgs, boosted reconstruction from p_T (H) ≈ 250 GeV

Subjets identified by clustering constituents as variable radius (VR) jets with $R = \rho/p_T$

Luca Cadamuro (IJCLab - CNRS/IN2P3)

Taggers for boosted HH searches within the ATLAS experiment

Clustering done with R = 1

Boosted jets: Increasing transverse momentum, p_T

Outline of boosted bb taggers

Taggers improve quickly following the technical evolutions in the field

Two main taggers are described in the following

- Xbb tagger
 - feed-forward NN that combined flavour tagging discriminants from subjets
 - calibrated on ATLAS Run 2 data
 - used in most of the Run 2 results
- GN2X tagger
 - most recent development

The comparison of their performance illustrates the power of going towards constituentbased taggers

uses low-level information from jet constituents in a GNN / Transformer network architecture

Taggers for boosted HH searches within the ATLAS experiment

Xbb tagger

- Individual subjets are tagged using single b-tagging DL1r algorithm (DNN) optimised for VR jets
- Jet information + DL1r output nodes of max 3 subjets are fed to Xbb

Luca Cadamuro (IJCLab - CNRS/IN2P3)

Taggers for boosted HH searches within the ATLAS experiment

ATL-PHYS-PUB-2020-019 ATL-PHYS-PUB-2021-035

$$D_{\text{Xbb}} = \ln \frac{p_{\text{Higgs}}}{f_{\text{top}} \cdot p_{\text{top}} + (1 - f_{\text{top}}) \cdot p_{\text{multijet}}}$$

Xbb tagger calibration

- Signal calibration on Z(bb)+jets and $Z(bb)\gamma$
- Background calibration on tt events
- Validation on $g \rightarrow bb$ events

Luca Cadamuro (IJCLab - CNRS/IN2P3)

ATL-PHYS-PUB-2021-035

Taggers for boosted HH searches within the ATLAS experiment

ATL-PHYS-PUB-2022-027

Large jet features : $p_T/\eta/m$

20 low-level track features (momentum, geometry, quality)

Embedding representation

Transformer Encoder

Luca Cadamuro (IJCLab - CNRS/IN2P3)

GN2X

Primary task (jet flavour identification) + auxiliary tasks

- Evolution of GN1 architecture (based on GNN)
- 4 target flavour classes (bb, cc, top, QCD)
- Training done on ~60M jets

Taggers for boosted HH searches within the ATLAS experiment

Performance

Luca Cadamuro (IJCLab - CNRS/IN2P3)

Taggers for boosted HH searches within the ATLAS experiment

ATL-PHYS-PUB-2023-021

February 28th, 2024

12

Luca Cadamuro (IJCLab - CNRS/IN2P3)

- Effect on the background observed in the edge mass regions
 - training performed with jets of mass [50, 300] GeV
 - approximately flattened signal sample from ZH(bb) and p_T-binned QCD sample

Beyond track information

Luca Cadamuro (IJCLab - CNRS/IN2P3)

Taggers for boosted HH searches within the ATLAS experiment

Boosted $H \rightarrow \tau \tau$ reconstruction

Collimated $\tau\tau$ decays mutually affect isolation criteria

- Target $\tau_{\rm h}\tau_{\rm h}$ only
- Seeded by R=1 jets with p_T > 300 GeV
- Constituents reclustered with R = 0.2, 2 sub-jets needed
- $\tau_{\rm h}$ reconstructed from tracks matched to subjets, residual tracks for isolation

Luca Cadamuro (IJCLab - CNRS/IN2P3)

JHEP 11 (2020) 163

Taggers for boosted HH searches within the ATLAS experiment

Boosted $H \rightarrow \tau \tau$ identification

BDT-based signal identification

Tagging likely to benefit of more advanced constituent-based tagging techniques

Luca Cadamuro (IJCLab - CNRS/IN2P3)

Taggers for boosted HH searches within the ATLAS experiment

BDT for identification

- stable performance vs p_T and pileup
- 17 high-level features
 - multiplicity of tracks, isolation, and distribution of energy between subjets and R=1 jet
- Require 1 or 3 tracks in the subjet core to tag π^{\pm} /

 $\pi^{\pm}\pi^{\mp}\pi^{\pm}$

- $80\% \epsilon_{sig}$, 5x better bkg. rejection
- Calibration with high p_T $Z \rightarrow \tau \tau + b$ jet veto

Application example : $X \rightarrow HH \rightarrow bb\tau\tau$

- H(bb)H($\tau\tau$) events reconstructed with two large radius jets
 - mass compatible with 125 GeV, 2 subjets btagging
- Multijet background estimated from data, $Z \rightarrow \tau \tau$ from MC

Events

Very small number of events \rightarrow simple counting experiment

Luca Cadamuro (IJCLab - CNRS/IN2P3)

Taggers for boosted HH searches within the ATLAS experiment

Limit discontinuities related to the change in the *m*_{HH}^{vis} requirement depending on the *m_X* hypothesis

Conclusions

- Very high $p_T(H)$ final states are interesting for HH physics high-sensitivity phase space corner for SM ggF, anomalous κ_{2V} coupling, high mass resonances
- Reconstruction of $p_T(H) \gtrsim 250$ GeV decays done as a single large-radius jet (R = 1) re-clustering of components to identify subjets and access jet substructure
- Improvement in the performance of the H(bb) identification obtained by moving from high-level (Xbb) to constituent-based (GN2X) taggers 2.5x better multijet rejection for the same signal efficiency
 - transformer architecture well suited for identification tasks
- Boosted H($\tau\tau$) identification thus far only on fully hadronic final states, simpler BDT algorithm based on high-level features expect a similar improvement as for H(bb) by exploiting constituent information
- Highly performant boosted H identification as key to push the exploration of the high m_{HH} regime

