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FIG. 1: Cartoon of the region in the plane (g⇤,�/g⇤), defined by Eqs. (13),(14), that can be probed
by an analysis including only dimension-6 operators (in white). No sensible e↵ective field theory
description is possible in the gray area (� < gmin), while exploration of the light blue region
(gmin < � <

p
g⇤gmin) requires including the dimension-8 operators.
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FIG. 2: Feyman diagrams contributing to double Higgs production via gluon fusion (an additional
contribution comes from the crossing of the box diagram). The last diagram on the first line
contains the t̄thh coupling, while those in the second line involve contact interactions between the
Higgs and the gluons denoted with a cross.

derivative terms (which correspond to dimension-8 operators in the limit of linearly-realized

EW symmetry). The e↵ect of the neglected derivative operators will be then studied by

analyzing their impact on angular di↵erential distributions and shown to be small in our

case due to the limited sensitivity on the high mhh region.

The Feynman diagrams that contribute to the gg ! hh process are shown in Fig. 2. Each

diagram is characterized by a di↵erent scaling at large energies
p
ŝ = mhh � mt, mh. We
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(d) Associated production with top-quarks: qq̄/gg → tt̄HH

Figure 1: Some generic Feynman diagrams contributing to Higgs pair production at hadron
colliders.
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with ŝ and t̂ denoting the partonic Mandelstam variables. The triangular and box form
factors F△, F! and G! approach constant values in the infinite top quark mass limit,

F△ →
2

3
, F! → −

2

3
, G! → 0 . (6)

The expressions with the complete mass dependence are rather lengthy and can be found
in Ref. [11] as well as the NLO QCD corrections in the LET approximation in Ref. [18].

The full LO expressions for F△, F! and G! are used wherever they appear in the
NLO corrections in order to improve the perturbative results, similar to what has been
done in the single Higgs production case where using the exact LO expression reduces the
disagreement between the full NLO result and the LET result [7, 19].

For the numerical evaluation we have used the publicly available code HPAIR [44] in
which the known NLO corrections are implemented. As a central scale for this process
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(d) Associated production with top-quarks: qq̄/gg → tt̄HH

Figure 1: Some generic Feynman diagrams contributing to Higgs pair production at hadron
colliders.
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with ŝ and t̂ denoting the partonic Mandelstam variables. The triangular and box form
factors F△, F! and G! approach constant values in the infinite top quark mass limit,

F△ →
2

3
, F! → −

2

3
, G! → 0 . (6)

The expressions with the complete mass dependence are rather lengthy and can be found
in Ref. [11] as well as the NLO QCD corrections in the LET approximation in Ref. [18].

The full LO expressions for F△, F! and G! are used wherever they appear in the
NLO corrections in order to improve the perturbative results, similar to what has been
done in the single Higgs production case where using the exact LO expression reduces the
disagreement between the full NLO result and the LET result [7, 19].

For the numerical evaluation we have used the publicly available code HPAIR [44] in
which the known NLO corrections are implemented. As a central scale for this process
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FIG. 1: Cartoon of the region in the plane (g⇤,�/g⇤), defined by Eqs. (13),(14), that can be probed
by an analysis including only dimension-6 operators (in white). No sensible e↵ective field theory
description is possible in the gray area (� < gmin), while exploration of the light blue region
(gmin < � <

p
g⇤gmin) requires including the dimension-8 operators.

g

g h

h

t

g

g h

h

t
h

g

g h

h

t

g

g h

h

h

g

g h

h

FIG. 2: Feyman diagrams contributing to double Higgs production via gluon fusion (an additional
contribution comes from the crossing of the box diagram). The last diagram on the first line
contains the t̄thh coupling, while those in the second line involve contact interactions between the
Higgs and the gluons denoted with a cross.

derivative terms (which correspond to dimension-8 operators in the limit of linearly-realized

EW symmetry). The e↵ect of the neglected derivative operators will be then studied by

analyzing their impact on angular di↵erential distributions and shown to be small in our

case due to the limited sensitivity on the high mhh region.

The Feynman diagrams that contribute to the gg ! hh process are shown in Fig. 2. Each

diagram is characterized by a di↵erent scaling at large energies
p
ŝ = mhh � mt, mh. We
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Boosted HH in ggF production

3

 [GeV]HHm
250 300 350 400 450 500 550

a.
u.

0

0.005

0.01

0.015

0.02

0.025
 = 1 , SMλk
 = 0 , only box diagramλk
 = 2.45 , maximal interferenceλk
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 = 20 , mainly triangle diagramλk
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Resonant 
production 

New heavy states

Vector boson 
fusion 

VVHH coupling (κ2V)
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SM (inclusive)

(H) > 250 GeV [7.8%]
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(H) > 300 GeV [3.6%]
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■ SM has one of the hardest mHH 
spectra (κλ effects typically at 
threshold)

Tiny phase space portion that can provide advantageous S/B separation

Gluon fusion 
SM HH signal 

Self-coupling (κλ), 
EFT
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Boosted HH in VBF production

■ Very large changes in mHH with 
O(1) κ2V variations because of 
alterations in the cancellations 
from electroweak doublet 
structure 

4

Resonant 
production 

New heavy states

Vector boson 
fusion 

VVHH coupling (κ2V)

Gluon fusion 
SM HH signal 

Self-coupling (κλ), 
EFT
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=2, Enhanced VVHH interaction2Vk

(13 TeV)

CERN-THESIS-2021-218

𝒜 (VLVL → HH) ≃
̂s

v2 (κ2V − κ2
V)

Dominant boosted production 
in case of anomalous couplings 

EPJC 77 (2017) 7, 481

https://cds.cern.ch/record/2791685
https://doi.org/10.1140/epjc/s10052-017-5037-9
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Boosted HH in resonant production

■ Resonant searches 
span a broad mX range


■ High mass resonances 
result in highly boosted 
H bosons


■ Boosted H tagging is 
fundamental to explore 
mX > 1 TeV

5

Resonant 
production 

New heavy states

Vector boson 
fusion 

VVHH coupling (κ2V)

Gluon fusion 
SM HH signal 

Self-coupling (κλ), 
EFT

Boosted topologies naturally dominant at high mX

High mX limit driven by 
boosted bbbb

arXiv:2311.15956

(submitted to PRL)

https://arxiv.org/abs/2311.15956


February 28th, 2024Luca Cadamuro (IJCLab - CNRS/IN2P3) Taggers for boosted HH searches within the ATLAS experiment

Which final state for boosted HH?

6

■ HH searches span a broad set of final states


■ Boosted topologies usually identify a small 
portion of the phase space (ggF) or feature 
small cross sections (VBF, resonant)


■ High BR channels with hadrons most suited for 
the application of boosted tagging in HH

Keep 𝓑 high enough

6−10
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4−10

3−10
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1

bb WW gg ττ ZZ γγ

γγ

ZZ

ττ

gg

WW

bb B(HH→xx yy) 
mH = 125 GeV

rarer

rarer

: ATLAS public results with full Run 2 data setXX %

bb WW ττ ZZ γγ

γγ

ZZ

ττ

WW

bb

6−10

5−10

4−10

3−10

2−10

1−10

1
B (HH ! xx yy)

<latexit sha1_base64="PcXi1NmIKzy4A9YCzeL8zLRmxlA="></latexit>

mH = 125GeV
<latexit sha1_base64="jHxiwJftyL4FJ88LOE+YRgXzCqI="></latexit>

Trade-off 
between 𝓑 
and purity 

33.9%

24.9%

7.3%

3.1%

0.26%
rarer

rarer

H→ bb/WW/𝜏𝜏 final states are particularly 
interesting for boosted HH searches

Boosted W final states were not yet explored in an ATLAS HH 
search and hence boosted W tagging is not covered here. 
Several boosted W algorithms exist and could be applied for 
this topology.
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Boosted tagging inputs : UFO jets
■ Unified Flow Objects jets 

combine optimally calorimeter 
and tracker information (EPJC 
81 (2021) 4, 334)

□ Particle Flow Objects (PFO) : 

particle energy estimation from 
track subtracted from calo cluster


□ Track-Calo Cluster (TCC) : energy 
from calo cluster + η,φ information 
from tracks


□ dedicated pileup mitigation and jet 
grooming

7
ATL-PHYS-PUB-2017-015

Clustering done with R = 1 
ΔR ~ 2m/pT → for Higgs, boosted 

reconstruction from pT (H) ≈ 250 GeV 
Subjets identified by clustering 

constituents as variable radius (VR) jets 
with R = ρ/pT

EPJC 77 (2017) 466

Input constituents as close as 
possible to individual physics 

particles

https://arxiv.org/pdf/2009.04986.pdf
https://arxiv.org/pdf/2009.04986.pdf
https://cds.cern.ch/record/2275636/files/ATL-PHYS-PUB-2017-015.pdf
https://arxiv.org/pdf/1703.10485.pdf


February 28th, 2024Luca Cadamuro (IJCLab - CNRS/IN2P3) Taggers for boosted HH searches within the ATLAS experiment

Outline of boosted bb taggers

Two main taggers are described in the following


■ Xbb tagger

□ feed-forward NN that combined flavour tagging discriminants from subjets

□ calibrated on ATLAS Run 2 data

□ used in most of the Run 2 results


■ GN2X tagger

□ most recent development

□ uses low-level information from jet constituents in a GNN / Transformer network architecture


The comparison of their performance illustrates the power of going towards constituent-
based taggers

8

Taggers improve quickly following the technical evolutions in the field
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Xbb tagger

■ Individual subjets are tagged using single b-
tagging DL1r algorithm (DNN) optimised for VR jets


■ Jet information + DL1r output nodes of max 3 
subjets are fed to Xbb

9

ATL-PHYS-PUB-2020-019

ATL-PHYS-PUB-2021-035

https://cds.cern.ch/record/2724739/files/ATL-PHYS-PUB-2020-019.pdf
https://cds.cern.ch/record/2777811/files/ATL-PHYS-PUB-2021-035.pdf
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Xbb tagger calibration

■ Signal calibration on 
Z(bb)+jets and Z(bb)𝛾


■ Background calibration 
on tt events


■ Validation on g→bb 
events

10

ATL-PHYS-PUB-2021-035

https://cds.cern.ch/record/2777811/files/ATL-PHYS-PUB-2021-035.pdf
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GN2X

11

ATL-PHYS-PUB-2022-027

Transformer network

Large jet features : pT/η/m 

20 low-level track features 
(momentum, geometry, 
quality)

Primary task (jet flavour identification) + 
auxiliary tasks

Embedding 
representation

Transformer 
Encoder 

■ Evolution of GN1 architecture (based on GNN)


■ 4 target flavour classes (bb, cc, top, QCD)


■ Training done on ~60M jets

https://cds.cern.ch/record/2811135/files/ATL-PHYS-PUB-2022-027.pdf
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Performance

■ GN2X vs Xbb: 
importance of 
low-level 
information


■ GN2X vs 2 VR 
GN2 : 
importance of 
correlations 
across 
subjets 

12

GN2X outperforms previous taggers

ATL-PHYS-PUB-2023-021

https://cds.cern.ch/record/2866601/files/ATL-PHYS-PUB-2023-021.pdf
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Mass sculpting

■ Effect on the background observed in the edge 
mass regions 

□ training performed with jets of mass [50, 300] GeV

□ approximately flattened signal sample from ZH(bb) 

and pT-binned QCD sample

13
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Beyond track information

■ Inclusion of neutral information (energy flow 
constituents) and subjet information further 
improves the performance

14

ATL-PHYS-SLIDE-2023-328

https://cds.cern.ch/record/2867456/files/ATL-PHYS-SLIDE-2023-328.pdf
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Boosted H→𝜏𝜏 reconstruction

15
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Reconstruction of 𝜏h𝜏h as a 
single R =1 jet

Collimated 𝜏𝜏 decays mutually 
affect isolation criteria
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■ Target 𝜏h𝜏h only


■ Seeded by R=1 jets with 
pT > 300 GeV 


■ Constituents reclustered 
with R = 0.2, 2 sub-jets 
needed


■ 𝜏h reconstructed from 
tracks matched to sub-
jets, residual tracks for 
isolation

https://doi.org/10.1007/JHEP11(2020)163
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Boosted H→𝜏𝜏 identification
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BDT-based signal 
identification

Tagging likely to benefit of more advanced 
constituent-based tagging techniques
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■ BDT for identification

□ stable performance vs pT 

and pileup


■ 17 high-level features

□ multiplicity of tracks, 

isolation, and distribution 
of energy between subjets 
and R=1 jet


■ Require 1 or 3 tracks in 
the subjet core to tag 𝜋± / 
𝜋±𝜋∓𝜋±

□ 80% εsig, 5x better bkg. 

rejection


■ Calibration with high pT 
Z→𝜏𝜏 + b jet veto

https://doi.org/10.1007/JHEP11(2020)163


February 28th, 2024Luca Cadamuro (IJCLab - CNRS/IN2P3) Taggers for boosted HH searches within the ATLAS experiment

Application example : X→HH→bb𝜏𝜏
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)hτhτ HH (bb→X ■ H(bb)H(𝜏𝜏) events 

reconstructed with 
two large radius jets

□ mass compatible with 

125 GeV, 2 subjets b-
tagging 


■ Multijet background 
estimated from data, 
Z→𝜏𝜏 from MC

Very small number of events 
→ simple counting experiment

Limit discontinuities related to the 
change in the mHHvis requirement 
depending on the mX hypothesis

https://doi.org/10.1007/JHEP11(2020)163
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Conclusions
■ Very high pT(H) final states are interesting for HH physics

□ high-sensitivity phase space corner for SM ggF, anomalous κ2V coupling, high mass resonances


■ Reconstruction of pT(H)  250 GeV decays done as a single large-radius jet (R = 1)

□ re-clustering of components to identify subjets and access jet substructure


■ Improvement in the performance of the H(bb) identification obtained by moving from 
high-level (Xbb) to constituent-based (GN2X) taggers

□ 2.5x better multijet rejection for the same signal efficiency

□ transformer architecture well suited for identification tasks


■ Boosted H(𝜏𝜏) identification thus far only on fully hadronic final states, simpler BDT 
algorithm based on high-level features

□ expect a similar improvement as for H(bb) by exploiting constituent information


■ Highly performant boosted H identification as key to push the exploration of the high mHH 
regime

≳
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