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A CONDITIONAL SEQUENCE
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adapted from arXiv:2211.01421

parton level theory

〈

𝛉 NOT 

stochastic;

Frequentist
parton-level 

differential cross section

~ pdf

〈
particle level

1. Generators run 

in ‘forward mode’ 

2. Pick up uncertainties

analysis level

〈

Likelihood ratio is the optimal statistic

(Neyman-Pearson Lemma)

1. This is a ratio of integrals; z is integrated.

2. Would like to evaluate for varying 𝛉, 𝛎

hadronization

https://arxiv.org/pdf/2211.01421.pdf


THE TOPICS IN THIS TALK
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1. How can we learn the 

SMEFT likelihood ratio

with trees

“Simulation based inference” 

in WH and ZH final states

2. Obtain SMEFT constraints 

from particles in boosted fat jets

with equivariant gNNs

in semi-leptonic WZ final states

F(𝛉)…

F1(𝛉)
F2(𝛉)

LR(𝛉)Σ

[arXiv: 2401.10323]

[arXiv:2107.10859, arXiv:2205:12976]

https://arxiv.org/pdf/2401.10323.pdf
https://arxiv.org/abs/2107.10859
https://arxiv.org/pdf/2205.12976.pdf
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mixing signals & 

case dependent mixes

• We can try to learn EFT effects on average with this “likelihood ratio trick”

• Sending ‘mixed signals’ to the loss function

• Averages the training data set  - suboptimal when linear effects dominate

• Classifier does not reflect knowledge on the 𝛉-dependence

• Back to the drawing board & inject 𝛉 polynomial SMEFT dependence in estimator.

Weak vector coupling (L)
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𝛉 - ignorant

CAN WE JUST LEARN EFT EFFECTS “ON AVERAGE”?

[TOP-21-001]

https://cms.cern.ch/iCMS/analysisadmin/cadilines?line=TOP-21-001&tp=an&id=2406&ancode=TOP-21-001


EXPLOITING SMEFT REWEIGHTING
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Change in likelihood of simulated observation x 

with latent “history” z going from “SM” to 𝛉

staged simulation in forward mode:

Intractable factors cancel

re-calcuable

theory prediction
weighted

simulation

𝛉 - aware

We start with SM and BSM samples

EFT sample SM sample

Let’s write this under one integral

z … latent space

… and use just one sample 

& joint likelihood ratio

SM sample

“joint” likelihood ratio

= wi(𝛉)
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Similar to 

S. Chen, A. Glioti, 

G. Panico, A. Wulzer

JHEP 05 (2021) 247

arXiv:2308.05704

invert likelihood trick

insert model knowledge: 

fit universal

coefficient functions

MSE or cross entropy

K. Cranmer , J. Pavez , and G. Louppe [1506.02169] 

J. Brehmer, K. Cranmer, G. Louppe, J. Pavez [1805.00013] 

[1805.00020] 

[1805.12244]

J. Brehmer, F. Kling, I. Espejo, K. Cranmer [1907.10621]

“Madminer” 

Why would you

want to use trees instead?

Integrates latent space!

PARAMETRIZED CLASSIFIERS

pT(V)

linear term

quadratic

term

R(pT≈500) = 

1 + blue 𝛉 + red 𝛉2

https://arxiv.org/abs/2007.10356
2308.05704
https://arxiv.org/pdf/1506.02169.pdf
https://arxiv.org/pdf/1805.00013.pdf
https://arxiv.org/pdf/1805.00020.pdf
https://arxiv.org/pdf/1805.12244.pdf
https://arxiv.org/pdf/1907.10621.pdf


A SIMPLE TREE ALGORITHM

• A tree is a hierarchical phase-space partitioning (𝒥)

• the novelty in the Boosted Information Tree is that we associate each region j with a polynomial Fj(𝛉)

• Note: A tree algorithm can have an arbitrarily complicated predictive function; here it is a SMEFT polynomial

• Fitting tree: Optimize ”node split positions” on some loss. Trained (e.g. greedily) on the ensemble.
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cut on x1

cut on x2

cut on x1 again etc.

F…

F1 F2

training phase:

e.g. “CART” algo

x1

x2

F1(𝛉) F2(𝛉) F3(𝛉)

F4(𝛉)
F7(𝛉)F6(𝛉)

F8(𝛉)

Phase-space partitioning

[arXiv:2107.10859, arXiv:2205:12976]

phase space

partitioning J
prediction Fj

need to solve for partitioning J and {Fj}

index-function (non-linearity)

A simple tree

https://arxiv.org/abs/2107.10859
https://arxiv.org/pdf/2205.12976.pdf


8

Want to regress in r,  exploiting its the polynomial 𝛉 dependence

Tree ansatz

Fj(𝛉) polynomial with const. coeff.

(per node) 

We’ll find an optimized tree.

→ boost

[arXiv:2107.10859, arXiv:2205:12976]

→ will allow to compute the

optimal LLR test statistic q(𝒟)

find optimal 

partitioning

find optimal 

predictor

The latent space integration happens at the 

node-level and removes learnable parameters  

PARAMETRIC TREES FOR SMEFT

Eliminate the predictive function

Solve for optimal partitioning with greedy CART algorithm

We’re optimizing the Fisher information!

NP!

https://arxiv.org/abs/2107.10859
https://arxiv.org/pdf/2205.12976.pdf


• Realistic case: model of the ZH process

• “Boosted Information Tree (BIT)”

• 3 WC, 9 DOF, 500k events, ZH

• 200 trees, D=5, 9 minutes of training

• also more realistic study, including 

backgrounds [2107.10859], [2205.12976]

• Learning coefficient functions to

compute parametrized optimal oberables
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=
→ parametrized LR(𝛉)

https://arxiv.org/abs/2107.10859
https://arxiv.org/abs/2205.12976


• Obtain parametrized classifiers with 20-40% improvements for two-at-a-time limits

• No free lunch – Analysis dependent choices are needed

• Systematics treatment for unbinned analyses (beyond Higgs M4ℓ) less far developed

• Is it all worth it in higher dimensions?Yes! [ML4EFT] shows factor ~5 improvements in marginalized limits
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tree depth: 

theoretical 

optimum

Boosted 

information 

tree

(BIT)

[arXiv:2107.10859, arXiv:2205:12976]

improvement

over “RunII”

strategy

OPTIMALITY IN TEST CASES

https://arxiv.org/pdf/2211.02058.pdf
https://arxiv.org/abs/2107.10859
https://arxiv.org/pdf/2205.12976.pdf


SMEFT SENSITIVITY OF DIBOSON FINAL STATES

• SMEFT sensitivity in diboson derives from “resurrected” interference 
PLB 20 (2018) 776, JHEP 06 (2021) 031

• Reconstruction of production- & decay planes boost sensitivity up to x10

• Are all angles equal? No; 

• The leading linear cW/cWtil sensitivity comes from 𝜙.

• Can we exploit this fact in semi-leptonic final states of pp→WZ?
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CMS Wɣ analysis PRD 105(222)052003

CP-even: cos(2φ) ⟷

CP-odd : sin(2φ)  ⟷

https://arxiv.org/pdf/1708.07823.pdf
https://arxiv.org/abs/2012.11631
Phys.%20Rev.%20D%20105%20(2022)%20052003


PP ⟶W(BOOSTED) Z(⟶ℓℓ)
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• The linear SMEFT effect in WZ is in the tilt of 

the decay plane vs. production plane.

• Measure particles in the WZ frame

with respect to the beam plane



• Particles are measured in the production plane; fed into gNN and try to learn the linear SMEFT term.

• gNN efficiently encodes the jet’s substructure. But the linear SMEFT will  be in  the substructure’s spatial orientation.

• Include  a special network feature that transforms under rotations around the jet axis exactly like the input: Equivariance.

• Rotating the input particles by an angle of ΔΦ results transforms the output by exp(i ΔΦ); feed into readout DNN.

NETWORK ARCHITECTURE
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[arXiv: 2401.10323]

Input data

and pT,i

SO(2)- Equivariance

LR(𝛉)

Loss function

https://arxiv.org/pdf/2401.10323.pdf


WHAT DOES THE GNN LEARN?

• Toy studies! Let’s look at the internal representation.

• Top: Classify different 2-prong orientations

• The information is ONLY in the rotational angle

• The internal scalars are irrelevant

• Bottom: 2-prong vs one- prong classification

• The discriminative information is in the substructure

• The rotational angle is not important
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substructure
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[arXiv: 2401.10323]

sin

cos

https://arxiv.org/pdf/2401.10323.pdf


FIRST RESULTS

• Learned linear SMEFT

sensitivity (Score)

vs. true decay plane angle

• Delphes mock-up limits

• Bottom: angular regression in 𝜙

• Example of a refined inductive bias to

leverage new(-ish) ML developments for SMEFT
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[arXiv: 2401.10323]

https://arxiv.org/pdf/2401.10323.pdf


SUMMARY
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1.  Trees are efficient & useful

for learning high-dimensional 

SMEFT dependence

2. Equivariant gNNs give access to

the linear SMEFT term in hadronic

final states

[arXiv: 2401.10323]

[arXiv:2107.10859, arXiv:2205:12976]

https://arxiv.org/pdf/2401.10323.pdf
https://arxiv.org/abs/2107.10859
https://arxiv.org/pdf/2205.12976.pdf
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• Given a phase space region with EFT dependence: NN must select & predict

• In the Boosted Information Tree, the weak learner only selects 

• The prediction (Fj) is computed from the boxed events → integrates latent space 

• The regression problem is  solved with  computational complexity of classification

• Speed advantage at high operator dimensions!

prediction

known

NETWORKS VS. TREES – WHAT IS THE BIG DEAL?



GOALS FOR MACHINE-LEARNING OF EFT

• SMEFT effects can be

1. in the tails of the distributions because, e.g. 

4-point functions grow with energy

2. in angular observables & correlations, 

sometimes encoding CP-violating effects 

• “interference resurrection” PLB 2017 11 086

“method of moments” JHEP 06 (2021) 031

• Enhance / single out the linear term

• Up to triple-angular correlations, 

x5-10 boost in sensitivity

3. on top of “kinematically complex” 

backgrounds 

• Def: Usually amenable to classification MVAs

• Unify the training target with classification
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triple-angular 

correlation

cHW/cHWtil cHQ3 ↔︎ also in ttZ

Tree-level SMEFT amplitude of ZH (transverse polarisation):

[EPJC 81 (2021) 178]

https://www.sciencedirect.com/science/article/pii/S0370269317309607?via%3Dihub
https://link.springer.com/article/10.1007/JHEP06(2021)031
https://link.springer.com/article/10.1140/epjc/s10052-020-08677-2


HOW TO PARAMETRIZE?

• Quantum field theory: Differential cross section predict polynomial SM-EFT dependence:

• additivity of the matrix element → incur a simple (polynomial) dependence in 𝛉 for fixed configuration z
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probability = wave function, squared

• Neyman-Pearson: 

Optimality can be achieved with cross-section ratio R or its

universal coefficient functions Ra, Rab

NB #2: R is positive: Fit universal dependence using

the most general quadratic polynomial

where

“normalization” “shape”

NB #1 Curse of dimensionality is lifted!!

15 operators → 136 coefficients



• Measure the top quark – Z boson coupling

• Train separate “SM vs. EFT” classifiers

• Single operator OtZ, OtW, O3
𝜙Q

• different trainings for different limits (!)

• “likelihood trick” for SMEFT effects

• signal extraction with 1D, 2D, and 5D LL fit 

• Sampling of parameter space in the  training

• Targeted signals differ kinematically, but no parametrized training is used

• Signal mix

• no large linear 

terms →OK

• Best current limits
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tt

811 pb

t (t-channel)

217 pb

tW

72 pb

t (s-channel)

10 pb

ttZ

1 pb

tZq

0.088 pb
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Weak dipole interactions

W
ea

k 
d

ip
o

le
 in

t.

JHEP 12 (2021) 083TOP QUARK PAIR + Z BOSON

https://arxiv.org/abs/2107.13896
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ML4EFT R. Ambrosio, J. Hoeve, M. Madigan, J. Rojo, V. Sanz [2211.02058]

[CMS-TOP-PAS-20-006]

• [ML4EFT] – study ZH and top quark pairs

• Pheno study with parametrized NN classifiers

• Top quark pairs in low (Nf=2) and high feature dimension Nf=18

• Pairs of 2D limits with 6 more ops marginalized

• Binned vs. unbinned: Some gain w/ unbinned when using 2 features

• High dimensional observation (Nf=18) constraining a 

high-dimensional (Ncoef=8) model using an SM candle

• Large improvement for Nf=18– mostly in the 

marginalized limits

IMPROVING HIGH DIMENSIONAL LIMITS

• Take seriously constraining power from SM candle

• Whether the sensitivity gain survives systematics in an 

unbinned detector-level analysis is an open question

https://arxiv.org/abs/2211.02058
http://cds.cern.ch/record/2803771?ln=en
https://arxiv.org/abs/2211.02058


• Binned parametrized classifiers are impractical

for high SMEFT parameter dimension

• What’s missing to go all-in? Systematics.

• Intractable factors no longer cancel exactly!

• Learn systematic likelihood term with NNs 𝛅1,2

• A challenge: dim(𝛎) , dim(𝛉) ~ 20 – 50, and high 

event counts in the profiling

• Divide & conquer #1: Experiments begun machine-

learning certain nuisances: hdamp, b-fragmentation

TOWARDS UNBINNED ANALYSIS
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Systematic 

variations 

are cheap!

Improve your modeling here

• Divide & conquer #2: 

Unbinned unfolding for high dimensions

• Consider on the conditional pdf

which can be evaluated in the forward mode

• Unfolding algorithms use Bayes’ theorem

to learn ; GAN & other generative versions

• Mostly iterative, to remove simulated prior

• Report unbinned unfolded data; then SMEFT analysis

[community paper]

e.g. [OmniFold] 

[cINN], [all]

[Pierini et.al 2111.13633]

https://arxiv.org/pdf/2109.13243.pdf
https://arxiv.org/abs/1911.09107
https://arxiv.org/pdf/2212.08674.pdf
https://iml-wg.github.io/HEPML-LivingReview/#unfolding
https://arxiv.org/pdf/2111.13633.pdf
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• Madminer: Neural networks based likelihood-free inference & related techniques 

• K. Cranmer , J. Pavez , and G. Louppe [1506.02169] 

J. Brehmer, K. Cranmer, G. Louppe, J. Pavez [1805.00013] [1805.00020] [1805.12244]

J. Brehmer, F. Kling, I. Espejo, K. Cranmer [1907.10621]

• J. Brehmer, S. Dawson, S. Homiller, F. Kling, T. Plehn [1908.06980]

• A. Butter, T. Plehn, N. Soybelman, J. Brehmer [2109.10414]

• established many of the main ideas & statistical interpretation in various NN applications

• Weight derivative regression (A.Valassi) [2003.12853]

• Parametrized classifiers for SM-EFT: NN with quadratic structure

• S. Chen, A. Glioti, G. Panico, A. Wulzer [JHEP 05 (2021) 247] [arXiv:2308.05704]

• Boosted Information Trees: Tree algorithms & boosting

• S. Chatterjee, S. Rohshap, N. Frohner, R.S., D. Schwarz [2107.10859], [2205.12976]

• ML4EFT R. Ambrosio, J. Hoeve, M. Madigan, J. Rojo, V. Sanz [2211.02058] → talk later today

• All approaches are “SMEFT-specific ML” with differences mostly on the practical side

my practical

experience

WH with Bkgs
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