

(SOME MORE) MACHINE LEARNING APPLICATIONS FOR SMEFT

R. Schöfbeck (HEPHY Vienna), Feb. 29th, 2024, COMETA general meeting

A CONDITIONAL SEQUENCE

adapted from arXiv:2211.01421

THE TOPICS IN THIS TALK

I. How can we learn the SMEFT likelihood ratio with trees

"Simulation based inference" in WH and ZH final states

[[]arXiv:2107.10859, arXiv:2205:12976]

2. Obtain SMEFT constraints from particles in boosted fat jets with equivariant gNNs in semi-leptonic WZ final states

[arXiv: 2401.10323]

CAN WE JUST LEARN EFT EFFECTS "ON AVERAGE"?

- We can try to learn EFT effects on average with this "likelihood ratio trick"
- Sending 'mixed signals' to the loss function
 - Averages the training data set suboptimal when linear effects dominate
 - Classifier does not reflect knowledge on the θ-dependence
- Back to the drawing board & inject θ polynomial SMEFT dependence in estimator.

[<u>TOP-21-001</u>]

$$L = \sum_{\theta \in \mathcal{B}} \left(\langle \hat{f}(x; \theta)^2 \rangle_{\theta} + \langle (1 - \hat{f}(x; \theta))^2 \rangle_{\text{SM}} \right)$$

$$\stackrel{\bullet}{\xrightarrow{\theta - \text{ aware}}} EFT \text{ sample} \qquad \text{SM sample}$$

We start with SM and BSM samples

$$= \sum_{\theta \in \mathcal{B}} \int dx \, dz \, \left(p(x, z | \theta) \hat{f}(x; \theta)^2 + p(x, z | SM) (1 - \hat{f}(x; \theta))^2 \right)$$
 Let's write this under one integral z ... latent space

$$= \sum_{\theta \in \mathcal{B}} \int dx \, dz \, p(x, z | SM) \begin{pmatrix} r(x, z | \theta) \hat{f}(x; \theta)^2 + (1 - \hat{f}(x; \theta))^2 \end{pmatrix} \qquad \dots \text{ and use just one sample} \\ & \& \text{ joint likelihood ratio} \end{pmatrix}$$

$$r = \frac{p(x_{\text{det}}, \cdots, z_{\text{ptl}}, \cdots, z_{\text{p}}|\boldsymbol{\theta})}{p(x_{\text{det}}, \cdots, z_{\text{ptl}}, \cdots, z_{\text{p}}|\mathbf{SM})} = \frac{p(x_{\text{det}}|z_{\text{ptl}}) \cdots p(z_{\text{ptl}}|z_{\text{p}}) \cdots p(z_{\text{p}}|\boldsymbol{\theta})}{p(x_{\text{det}}|z_{\text{ptl}}) \cdots p(z_{\text{ptl}}|z_{\text{p}}) \cdots p(z_{\text{p}}|\mathbf{SM})} = \frac{p(z_{\text{p}}|\boldsymbol{\theta})}{p(z_{\text{p}}|\mathbf{SM})} \sim \frac{|\mathcal{M}(z_{\text{p}}, \boldsymbol{\theta})|^{2}}{|\mathcal{M}(z_{\text{p}}, \mathbf{SM})|^{2}} = w_{i}(\boldsymbol{\theta})$$

Change in likelihood of simulated observation x with latent "history" z going from "SM" to θ

staged simulation in forward mode: Intractable factors cancel re-calcuable theory prediction

weighted simulation

PARAMETRIZED CLASSIFIERS

A SIMPLE TREE ALGORITHM

- A tree is a hierarchical phase-space partitioning (*J*)
 - the novelty in the Boosted Information Tree is that we associate each region j with a polynomial $F_i(\theta)$
 - Note: A tree algorithm can have an arbitrarily complicated predictive function; here it is a SMEFT polynomial
- Fitting tree: Optimize "node split positions" on some loss. Trained (e.g. greedily) on the *ensemble*.

PARAMETRIC TREES FOR SMEFT

- Realistic case: model of the ZH process
- "Boosted Information Tree (BIT)"
 - 3 WC, 9 DOF, 500k events, ZH
 - 200 trees, D=5, 9 minutes of training
 - also more realistic study, including backgrounds [2107.10859], [2205.12976]
- Learning coefficient functions to compute parametrized optimal oberables

OPTIMALITY IN TEST CASES

- Obtain parametrized classifiers with 20-40% improvements for two-at-a-time limits
- No free lunch Analysis dependent choices are needed
 - Systematics treatment for unbinned analyses (beyond Higgs $M_{4\ell}$) less far developed
- Is it all worth it in higher dimensions? Yes! [ML4EFT] shows factor ~5 improvements in marginalized limits

SMEFT SENSITIVITY OF DIBOSON FINAL STATES

- SMEFT sensitivity in diboson derives from "resurrected" interference PLB 20 (2018) 776, JHEP 06 (2021) 031
 - Reconstruction of production- & decay planes boost sensitivity up to x10

- Are all angles equal? No;
 - The leading linear cW/cWtil sensitivity comes from ϕ .
 - Can we exploit this fact in semi-leptonic final states of pp→WZ?

NETWORK ARCHITECTURE

[<u>arXiv: 2401.10323]</u>

- Particles are measured in the production plane; fed into gNN and try to learn the linear SMEFT term.
- gNN efficiently encodes the jet's substructure. But the linear SMEFT will be in the substructure's spatial orientation.
 - Include a special network feature that *transforms under rotations around the jet axis exactly like the input*: Equivariance.
 - Rotating the input particles by an angle of $\Delta \Phi$ results transforms the output by exp(i $\Delta \Phi$); feed into readout DNN.

WHAT DOES THE GNN LEARN?

[arXiv: 2401.10323]

Toy studies! Let's look at the internal representation.

- Top: Classify different 2-prong orientations
 - The information is ONLY in the rotational angle
 - The internal scalars are irrelevant

 $h_{\varphi}^{(0)}$

 $\mathbf{h}_{i}^{(0)}$

= 0

- Bottom: 2-prong vs one- prong *classification*
 - The discriminative information is in the substructure
 - The rotational angle is not important

Itput

FIRST RESULTS

- $\langle t(\mathbf{x}) \rangle$ Learned linear SMEFT • sensitivity (Score) vs. true decay plane angle
- Delphes mock-up limits ٠

۲

- Bottom: angular regression in ϕ
- Example of a refined inductive bias to ٠ leverage new(-ish) ML developments for SMEFT

2.5

1.5

0.5

-0.5

-1.5

 $C_{\widetilde{W}}^{0.1}$

0.05

[arXiv: 2401.10323]

SUMMARY

 Trees are efficient & useful for learning high-dimensional SMEFT dependence

[arXiv:2107.10859, arXiv:2205:12976]

2. Equivariant gNNs give access to the linear SMEFT term in hadronic final states

NETWORKSVS. TREES – WHAT IS THE BIG DEAL?

- The prediction (F_j) is computed from the boxed events \rightarrow integrates latent space
- The regression problem is solved with **computational complexity** of classification
 - Speed advantage at high operator dimensions!

GOALS FOR MACHINE-LEARNING OF EFT

• SMEFT effects can be

- in the tails of the distributions because, e.g.
 4-point functions grow with energy
- in angular observables & correlations, sometimes encoding CP-violating effects
 - "interference resurrection" <u>PLB 2017 11 086</u>
 "method of moments" <u>JHEP 06 (2021) 031</u>
 - Enhance / single out the linear term
 - Up to triple-angular correlations, x5-10 boost in sensitivity
- 3. on top of "kinematically complex" backgrounds
 - Def: Usually amenable to classification MVAs
 - Unify the training target with classification

Tree-level SMEFT amplitude of ZH (transverse polarisation):

HOW TO PARAMETRIZE?

• Quantum field theory: Differential cross section predict polynomial SM-EFT dependence:

 $\mathrm{d}\sigma(oldsymbol{ heta}) \propto |\mathcal{M}_{\mathrm{SM}}(oldsymbol{z}) + oldsymbol{ heta}_a \mathcal{M}^a_{\mathrm{BSM}}(oldsymbol{z})|^2 \mathrm{d}oldsymbol{z}$

probability = wave function, squared

• additivity of the matrix element \rightarrow incur a simple (polynomial) dependence in θ for fixed configuration z

$$\frac{\mathrm{d}\sigma(\boldsymbol{x},\boldsymbol{\theta})}{\mathrm{d}\boldsymbol{x}} = \frac{\mathrm{d}\sigma_{\mathrm{SM}}(\boldsymbol{x})}{\mathrm{d}\boldsymbol{x}} + \sum_{a} \theta_{a} \frac{\mathrm{d}\sigma_{\mathrm{int.}}^{a}(\boldsymbol{x})}{\mathrm{d}\boldsymbol{x}} + \frac{1}{2} \sum_{a,b} \theta_{a} \theta_{b} \frac{\mathrm{d}\sigma_{\mathrm{BSM}}^{ab}(\boldsymbol{x})}{\mathrm{d}\boldsymbol{x}}$$

• Neyman-Pearson:
$$q(\mathcal{D}) = \frac{L(\mathcal{D}|\boldsymbol{\theta})}{L(\mathcal{D}|SM)}$$
 where $L(\mathcal{D}|\boldsymbol{\theta}) = P_{\mathcal{L}\sigma(\boldsymbol{\theta})}(N) \times \prod_{i=1}^{N} p(\boldsymbol{x}_i|\boldsymbol{\theta})$
 $q_{\boldsymbol{\theta}}(\mathcal{D}) = \mathcal{L}(\sigma_{\boldsymbol{\theta}} - \sigma_{SM}) - \sum_{\boldsymbol{x}_i \in \mathcal{D}} \log R(\boldsymbol{x}_i|\boldsymbol{\theta}, SM)$ Optimality can be achieved with cross-section ratio R or its universal coefficient functions R_a, R_{ab}
 $\mathcal{R}(\boldsymbol{x}|\boldsymbol{\theta}, SM) = \frac{d\sigma(\boldsymbol{x}, \boldsymbol{\theta})/d\boldsymbol{x}}{d\sigma(\boldsymbol{x}, SM)/d\boldsymbol{x}} = 1 + \sum_{a} \theta_a R_a(\boldsymbol{x}) + \frac{1}{2} \sum_{a,b} \theta_a \theta_b R_{ab}(\boldsymbol{x})$
NB #1 Curse of dimensionality is lifted!! NB #2: R is positive: Fit universal dependence using the most general quadratic polynomial $\hat{\boldsymbol{x}} = (1 + \sum_{a} \theta_a \hat{n}_a(\boldsymbol{x}))^2 + \sum_{a} (\sum_{b} \theta_b \hat{n}_{ab}(\boldsymbol{x}))^2$

24

20

18

16

14

12

10

 $C_{\phi Q}^{-} / \Lambda^2 [TeV^{-2}]$

TOP QUARK PAIR + Z BOSON

.

- Train separate "SM vs. EFT" classifiers
 - Single operator O_{t7} , O_{tW} , $O_{3}_{\phi O}$
 - different trainings for different limits (!)
 - "likelihood trick" for SMEFT effects
- signal extraction with 1D, 2D, and 5D LL fit
 - Sampling of parameter space in the training

Weak dipole interactions

Targeted signals differ kinematically, but no parametrized training is used

138 fb⁻¹ (13 TeV) 138 fb⁻¹ (13 TeV) ²[TeV⁻²] $2\Delta \ln(\mathcal{L})$ Signal mix C_{tw} / A² [TeV⁻ **CMS** Preliminary **CMS** Preliminary 18 16 Best fit Best fit no large linear Λ^2 14 0 to terms $\rightarrow OK$ 12 🕑 0.5 Best current limits Weak dipole in -10-0.5 -20 Weal -1.5 -1 -0.5 0 0.5 1 1.5 15 20 -10 10 -5 0 5

 $C_{tz} / \Lambda^2 [TeV^{-2}]$

Weak vector coupling (L)

ML4EFT R. Ambrosio, J. Hoeve, M. Madigan, J. Rojo, V. Sanz [2211.02058]

IMPROVING HIGH DIMENSIONAL LIMITS

- [ML4EFT] study ZH and top quark pairs
- Pheno study with parametrized NN classifiers
- Top quark pairs in low ($N_f=2$) and high feature dimension $N_f=18$
 - Pairs of 2D limits with 6 more ops marginalized
 - Binned vs. unbinned: Some gain w/ unbinned when using 2 features
 - High dimensional observation (N_f=18) constraining a high-dimensional (N_{coef}=8) model using an SM candle
 - Large improvement for N_f=18– mostly in the marginalized limits
 - Take seriously constraining power from SM candle
 - Whether the sensitivity gain survives systematics in an unbinned detector-level analysis is an open question

TOWARDS UNBINNED ANALYSIS

- Binned parametrized classifiers are impractical for high SMEFT parameter dimension
- What's missing to go all-in? Systematics.

event counts in the profiling

 Divide & conquer #1: Experiments begun machinelearning certain nuisances: h_{damp}, b-fragmentation

- Divide & conquer #2: Unbinned unfolding for high dimensions
- Consider on the conditional pdf $p(x_{
 m det}|z_{
 m ptl})$ which can be evaluated in the forward mode
- Unfolding algorithms use Bayes' theorem $p(x_{det}|z_{ptl})p(z_{ptl}) = p(z_{ptl}|x_{det})p(x_{det})$ to learn $p(z_{ptl}|x_{det})$; GAN & other generative versions
 - Mostly iterative, to remove simulated prior

• Report unbinned unfolded data; then SMEFT analysis

REFERENCES

- Madminer: Neural networks based likelihood-free inference & related techniques
 - K. Cranmer , J. Pavez , and G. Louppe [1506.02169]
 J. Brehmer, K. Cranmer, G. Louppe, J. Pavez [1805.00013] [1805.00020] [1805.12244]
 J. Brehmer, F. Kling, I. Espejo, K. Cranmer [1907.10621]
 - J. Brehmer, S. Dawson, S. Homiller, F. Kling, T. Plehn [<u>1908.06980</u>]
 - A. Butter, T. Plehn, N. Soybelman, J. Brehmer
 - established many of the *main ideas* & *statistical interpretation* in various *NN applications*

2109.10414

- Weight derivative regression (A.Valassi)
 [2003.12853]
- Parametrized classifiers for SM-EFT: NN with quadratic structure
- S. Chen, A. Glioti, G. Panico, A. Wulzer [JHEP 05 (2021) 247] [arXiv:2308.05704]
- **Boosted Information Trees**: Tree algorithms & boosting
 - S. Chatterjee, S. Rohshap, N. Frohner, <u>R.S.</u>, D. Schwarz [<u>2107.10859</u>], [<u>2205.12976</u>]
- ML4EFT R. Ambrosio, J. Hoeve, M. Madigan, J. Rojo, V. Sanz [2211.02058]
- All approaches are "SMEFT-specific ML" with differences mostly on the practical side

