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Lattice field theory simulations - a (very) quick primer

Simple case: scalar field theory on a lattice:

▶ discretize space-time into a square lattice of spacing a

▶ scalar field variables placed on sites, action discretized in a consistent way

▶ compute v.e.v. as in statistical mechanics

⟨O⟩ =
1

Z

∫ ∏
i

dϕi O(ϕ)︸ ︷︷ ︸
measure

exp(−S(ϕ))︸ ︷︷ ︸
sample

with the very complicated probability distribution p(ϕ) = exp(−S(ϕ))/Z

▶ perform continuum extrapolation a → 0

Lattice field theories need an efficient way to generate configurations ϕ according to p(ϕ)

Elegant numerical solution: generate a (thermalized) Markov chain

ϕ(0) Pp→ ϕ(1) Pp→ . . .
Pp→︸ ︷︷ ︸

thermalization

ϕ(t) Pp→ ϕ(t+1) Pp→ · · · → ϕ(t+Nconf)︸ ︷︷ ︸
equilibrium

Compute Ô = 1
Nconf

∑
n O(ϕ(n))
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Critical slowing down

The configurations sampled sequentially in a Markov Chain are autocorrelated

· · · → ϕ(t) → ϕ(t+1) → · · · → ϕ(t+n)

The measure of this autocorrelation is given by τint

→ # effectively independent configurations = n/2τint

When a critical point is approached τint diverges

→ critical slowing down

The continuum limit a → 0 is a critical point, so

τint(O) ∼ a−z or τint(O) ∼ exp(α/a)

Configurations become more and more autocorrelated as the lattice spacing gets finer

Particularly severe for topological observables (see e.g. [Schaefer; 1009.5228])
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Deep generative models in lattice field theory

What if every new configuration is sampled independently from the previous one?

Try to model the target p(ϕ) by a mapping to a tractable distribution q0(z)

g g g g g g

Normalizing Flows might be a deep generative architecture efficient enough to provide this
mapping

Deeply related to the idea of trivializing maps [Lüscher; 0907.5491]
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Normalizing flow for lattice field theory

(Discrete) Normalizing Flows successfully applied in 2D:

▶ ϕ4 scalar field theory: [Albergo et al.; 1904.12072], [Kanwar et al.; 2003.06413], [Nicoli et al.;

2007.07115], [Del Debbio et al.; 2105.12481]

▶ gauge theories: SU(3) [Boyda et al.; 2008.05456] and U(1) [Singha et al.; 2306.00581]

▶ including fermions [Albergo et al.; 2106.05934]: Schwinger model [Finkenrath; 2201.02216]
[Albergo et al.; 2202.11712] and SU(3) [Abbott et al.; 2207.08945]

First proof-of-concept for QCD [Abbott et al.; 2208.03832] and SU(3) in 4D [Abbott et al.;

2305.02402]; further applications already within reach [Abbott et al.; 2401.10874]

Alternative architectures:

▶ Continuous Normalizing Flows for ϕ4 scalar theory [Gerdes et al.; 2207.00283], Nambu-Goto
string model [Caselle et al.; 2307.01107]

▶ Trivializing maps for SU(3) theory in 2D [Bacchio et al.; 2212.08469]

▶ Generalized with the use stochastic methods: SNFs [Caselle et al.; 2201.08862], CRAFT
[Matthews et al.; 2201.13117]

For a review check out plenary talk by Tej Kanwar at Lattice2023
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Normalizing flows: structure

Normalizing Flows are a deterministic mapping

gθ(ϕ0) = (gN ◦ · · · ◦ g1)(ϕ0) ϕ0 ∼ q0

composed of N invertible transformations → coupling layers gi

In each layer the field variables ϕ are transformed

ϕn+1 = gn(ϕn)

figure from [Papamakarios; 1912.02762]

The generated distribution for the output ϕ is

q(ϕ) = q0(g
−1
θ (ϕ))

∏
n

|det Jn(ϕn)|−1

and depends on the prior distribution q0 and on the Jacobian of the transformation
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Discrete Normalizing flows: affine layers

Transformations gn must be invertible + the Jacobian has to be efficiently computable

Affine layers meet this criteria (RealNVP architecture [Dinh et al.; 1605.08803])

▶ Divide variables ϕ into two partitions A and B

▶ One is kept “frozen” while the other is transformed following

gn :

{
ϕn+1

A = ϕn
A

ϕn+1
B = e−s(ϕn

A)ϕn
B + t(ϕn

A)

▶ s and t are the neural networks where the trainable parameters θ are

Natural choice for lattice variables: checkerboard (even-odd) partitioning
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Normalizing flows: training

Training: iterative procedure to minimize the loss

It must assure q to be as close as possible to the target p

Typical choice is the (reverse) Kullback-Leibler divergence

D̃KL(q∥p) =
∫

dϕ q(ϕ) log
q(ϕ)

p(ϕ)
= −⟨log w̃(ϕ)⟩ϕ∼q + logZ ≥ 0

Measure of the “similarity” between two distributions

Define the weight
w̃(ϕ) = p(ϕ)/q(ϕ)
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Normalizing flows and the free energy

How do we use a trained flow gθ and the distribution q?

▶ Reweighting

⟨O⟩ =
1

Z

∫
dϕO(ϕ)q(ϕ)

p(ϕ)

q(ϕ)
=

1

Z

∫
dϕ q(ϕ)︸︷︷︸

sample

O(ϕ)w̃(ϕ)︸ ︷︷ ︸
measure

=
⟨O(ϕ)w̃(ϕ)⟩ϕ∼q

⟨w̃(ϕ)⟩ϕ∼q

▶ Independent Metropolis-Hastings → build a new Markov Chain from the output of the flow

g g g g g g

Normalizing flows provide an exact sampling procedure of p!
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From the literature: the partition function

Get Z directly [Nicoli et al.; 2007.07115]

Z =

∫
dϕ exp(−S[ϕ]) =

∫
dϕ q(ϕ)w̃(ϕ) = ⟨w̃(ϕ)⟩ϕ∼q

→ free-energy calculation in the 2D ϕ4 scalar field theory
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From the literature: topological unfreezing

History of the topological charge in U(1) gauge theory in 2D from [Kanwar et al.; 2003.06413]

Topological freezing effectively disappears!

Theory is effectively trivialized
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Some possible issues with NFs: multi-modal distributions

in the presence of multiple vacua the training procedure “picks” only one

“mode-collapse”: only one mode of the distribution is sampled by the flow

several solutions proposed in [Hackett et al.; 2107.00734] (see plot), [Nicoli et al.; 2302.14082]
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Some possible issues with NFs: scalability

measurements of v.e.v. are statistically independent (no autocorrelation)

not clear however how the training times scale when approaching the continuum limit

comprehensive discussion in [Del Debbio et al.; 2105.12481] (see plot) and [Abbott et al.; 2211.07541]
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Stochastic Normalizing Flows and Jarzynski’s equality



Adding stochastic updates in the middle?

nstepncl

nrelax

nstepncl

nrelax

nstepncl

nrelax

nstepncl

nrelax

nstepncl

nrelax

nstepncl

In between coupling layers we apply regular Monte Carlo updates with transition probabilities Pηn

ηn is a protocol that interpolates the parameters of the theory between q0 and p

We get SNFs → [Wu et al.; 2002.06707] [Caselle et al.; 2201.08862]
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Jarzynski’s equality

Free-energy differences (at equilibrium) directly calculated with an average over non-equilibrium
processes [Jarzynski; 1997]:

Z

Z0
= ⟨exp (−W )⟩f

Along the process we compute the work

W =

N−1∑
n=0

{
Sηn+1 [ϕn]− Sηn [ϕn]

}

The proper KL divergence is a measure of reversibility

D̃KL(q0Pf∥pPr) =

∫
dϕ0 . . . q0(ϕ0)Pf[ϕ0 → ϕ] ln

q0(ϕ0)Pf[ϕ0 → ϕ]

p(ϕ)Pr[ϕ → ϕ0]
= ⟨W ⟩f −∆F ≥ 0︸ ︷︷ ︸

Second Law of thermodynamics!

JE is purely stochastic, but trainable coupling layers are easily accounted for including the
Jacobian in the work and in the D̃KL

SNFs are a powerful common framework!
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Training length: 104 epochs for all volumes. ESS = ⟨w̃⟩2f /⟨w̃2⟩f saturates fast
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0.0
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S

Ns = 16, nab = 0

Ns = 32, nab = 0

Ns = 48, nab = 0

Ns = 64, nab = 0

Ns = 16, nab = 24, CNN

Ns = 32, nab = 24, CNN

Ns = 48, nab = 24, CNN

Ns = 64, nab = 24, CNN
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Conclusions

▶ Normalizing Flows are an extremely promising approach to mitigate critical slowing down in
Lattice QCD

▶ Already capable of defeating or mitigating critical slowing down in low-dimensional theories

▶ Still, the scaling of training costs with the volume or for more complicated theories is
challenging

▶ New ideas might be needed to actually build an efficient mapping to fine lattice spacings

▶ The stochastic nature of SNFs have the chance to improve the scaling of the training and
provide insights on interpretability
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Thank you for your attention!

DeepMind-MIT group NF notebook for ϕ4

theory
Torino group SNF notebook for ϕ4 theory
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https://arxiv.org/abs/2101.08176
https://github.com/TurinLatticeFieldTheoryGroup/SNF_for_LFT


Continuous Normalizing Flows

Continuous NFs are built on Neural Ordinary Differential Equations (NODE) [Chen et al.;

1806.07366]

In CNFs gθ is the solution of an ODE parameterized by a neural network Vθ:

dϕ(t)

dt
= Vθ(ϕ(t), t)

and solving it numerically gives the desired output

ϕ(T ) = ODESOLVER(Vθ, ϕ(0), [0,T ])

The density of the generated samples can be computed through the ODE as well

d log qθ(ϕ(t))

dt
= −(∇ · Vθ)(ϕ(t), t)
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CNFs for Nambu-Goto string model

Impressive improvement over HMC in estimating the free energy
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Out-of-equilibrium stochastic evolutions

Closer look at the average on the processes in the equality:

Z

Z0
= ⟨exp (−W )⟩f =

∫
dϕ0 dϕ1 . . . dϕN q0(ϕ0)Pf[ϕ0, ϕ1, . . . , ϕN ] exp(−W )

with

Pf[ϕ0, ϕ1, . . . , ϕN ] =

N−1∏
n=0

Pηn (ϕn → ϕn+1)

▶ the actual probability distribution at each step is NOT the equilibrium distribution
∼ exp(−Sηn ): it’s a non-equilibrium process!

▶ the ⟨. . . ⟩f average is taken over as many evolutions as possible (all independent from each
other!)

for expectation values → reweighting-like formula

⟨O⟩ =
⟨O(ϕN) exp(−W (ϕ0 → ϕN))⟩f

⟨exp(−W (ϕ0 → ϕN))⟩f
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A common framework: Stochastic Normalizing Flows

Jarzynski’s relation is the same formula used to extract Z in NFs:

Z

Z0
= ⟨w̃(ϕ)⟩ϕ∼q = ⟨exp(−W )⟩f

The “work” is simply

W (ϕ0, . . . , ϕN) = S(ϕN)− S0(ϕ0)− Q(ϕ1, . . . , ϕN) = − ln w̃(ϕ)

normalizing flows

ϕ0 → ϕ1 = g1(ϕ0) → · · · → ϕ

Q =

N−1∑
n=0

ln |det Jn(ϕn)|

stochastic non-equilibrium evolutions

ϕ0

Pη1→ ϕ1

Pη2→ . . .
PηN→ ϕ

Q =

N−1∑
n=0

Sηn+1 (ϕn+1)− Sηn+1 (ϕn)

Stochastic Normalizing Flows (introduced in [Wu et al.; 2002.06707])

ϕ0 → g1(ϕ0)
Pη1→ ϕ1 → g2(ϕ1)

Pη2→ . . .
PηN→ ϕN

Q =

N−1∑
n=0

Sηn+1 (ϕn+1)− Sηn+1 (gn(ϕn)) + ln |det Jn(ϕn)|
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Some comparisons between NFs and SNFs

normalizing flows stochastic evolutions SNFs

preparation training setting the protocol ηn both

forward prob. Pf Pf =
∏

n Pn(ϕn → ϕn+1)

transition prob. Pn δ(ϕn+1 − gn(ϕn)) Pηn (ϕn → ϕn+1) uses both

KL divergence D̃KL(q∥p) D̃KL(q0Pf∥pPr)

“work” W = S − S0 − Q = − ln w̃

“heat” Q
N−1∑
n=0

ln |det Jn(ϕn)|
N−1∑
n=0

Sηn+1 (ϕn+1)− Sηn+1 (ϕn) both

e.v. ⟨O⟩
⟨O(ϕN )w̃(ϕN )⟩ϕN∼q

⟨w̃(ϕN )⟩ϕN∼q

⟨O(ϕN ) exp(−W (ϕ0→ϕN ))⟩f
⟨exp(−W (ϕ0→ϕN ))⟩f
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Testing SNFs

Goals

▶ can we train SNFs efficiently?

▶ can we improve both on NFs and on stochastic evolutions?

▶ how do the SNFs behave for a given neural network architecture?

▶ previous experience with stochastic evolutions with JE: the SU(3) equation of state in
(3 + 1)D [Caselle et al.; 2018]. Can we learn something from it?

Using the Effective Sample Size as metric to evaluate architectures

ESS =
⟨w̃⟩2f
⟨w̃2⟩f

ESS = 1 → perfect training
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SNFs for the ϕ4 2d model

Typical toy model for tests: ϕ4 field theory in 2 dimensions

S(ϕ) =
∑
x∈Λ

−2κ
∑
µ=0,1

ϕ(x)ϕ(x + µ̂) + (1− 2λ)ϕ(x)2 + λϕ(x)4

target parameters κ = 0.2 and λ = 0.022 (as in [Nicoli et al.; 2020]): unbroken symmetry phase

Protocol

ηn interpolates between the prior (normal distribution is recovered with κ = λ = 0) and target
parameters

▶ linear protocol ηn

▶ heatbath algorithm for the stochastic updates

▶ nsb = # of stochastic updates

Coupling layers and NN

▶ nab = # of affine blocks

▶ inside each affine layer neural networks are CNNs with 1 hidden layer, 3× 3 kernel and 1
feature map
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Comparing stochastic evolutions with (S)NFs on a Ns × Nt = 16× 8 lattice,
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SNFs with nsb = nab as a possible recipe for efficient scaling
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Some consideration on SNFs

The common framework between Jarzynski’s equality and NFs is now explicit

General idea: use knowledge from non-equilibrium SM to create efficient SNFs

SNFs vs. stochastic evolutions

▶ Jarzynski’s equality provides a way to compute Z and ⟨O⟩ (which works well also in LGTs,
see SU(3) e.o.s. [Caselle et al.; 2018])

▶ SNFs might be an even better method!

▶ trade-off: training for less MCMC updates

▶ very interesting for thermodynamic applications (or similar)

SNFs vs. normalizing flows

▶ improve scalability and interpretability?

▶ SNFs with CNNs and nsb = nab have a promising volume scaling at fixed training length

▶ training could be qualitatively “guided” towards the target by the protocol, but ultimately
might also be limited by it

Alessandro Nada (UniTo) Normalizing Flows for lattice field theory 29/2/2024 28/18



The Second Law of Thermodynamics

We start from Clausius inequality ∫ B

A

dQ

T
≤ ∆S

that for isothermal transformations becomes
Q

T
≤ ∆S

If we use {
Q = ∆E − W (First Law)

F
def
= E − ST

the Second Law becomes
W ≥ ∆F

where the equality holds for reversible processes.

Moving from thermodynamics to statistical mechanics we know that the former relation (valid for
a macroscopic system) becomes

⟨W ⟩f ≥ ∆F
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JE and the Second Law

Starting from Jarzynski’s equality〈
exp

(
−
W

T

)〉
f

= exp

(
−
∆F

T

)

and using Jensen’s inequality
⟨exp x⟩ ≥ exp⟨x⟩

(valid for averages on real x) we get

exp

(
−
∆F

T

)
=

〈
exp

(
−
W

T

)〉
f

≥ exp

(
−
⟨W ⟩f
T

)

from which we have
⟨W ⟩f ≥ ∆F

In this sense Jarzynski’s relation can be seen as a generalization of the Second Law.
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