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Working Group 2 of
Technological Innovation in Data Analysis

goals:
Create a discussion forum for the HEP and ML communities, enabling the development
of innovative tools that will improve future multi-boson measurements.
Establish a long-lasting, mutually beneficial cooperation between the HEP and ML
communities.

Currently, Working Group 2 has 100 members:

male
72%

female
27%

other1%

ITC
29%

non-ITC
71%

YRI

56%

non-YRI

44%

ITC: Inclusiveness Target Countries YRI: Young Researchers and Innovators (below age of 40)
Claudius Krause (HEPHY Vienna) COMETA WG2 March 1, 2024 2 / 12



Leaders of Working Group 2

Alessandra Cappati
(experiment)

– MSCA Fellow in CMS
(Lab. Leprince-Ringuet Palaiseau)

– background: multiboson physics
and HZZ convenor

– now: Higgs and AI-aided
reconstruction

Riccardo Finotello
(industry)

– Research Engineer at CEA
(Paris-Saclay)

– background: string theory and AI
for algebraic geometry

– now: computer vision for
hyperspectral images

Claudius Krause
(theory)

– tenure-tracker in ML4HEP
(HEPHY Vienna)

– background: Higgs and EFT

– now: application of generative
models
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Data analysis is very complex in HEP . . .

Machine Learning and LHC Event Generation, A. Butter et al. [2203.07460], R. Winterhalder

hits tracks
clusters

particle
candidates

selection analyses

pics based on [2105.01160]. . . and machine learning can help in every single step!
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Why is machine learning so popular for high-energy physics?

Data volume

Large amounts of labeled (simulation) and unlabeled (experiment) data.
⇒ ML works best with lots of data

https://lhc-commissioning.
web.cern.ch/schedule/
HL-LHC-plots.htm
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Why is machine learning so popular for high-energy physics?
Data volume

Data complexity

High-dimensional & highly correlated data.
⇒ ML can handle that well
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Why is machine learning so popular for high-energy physics?
Data volume Data complexity

Signal detection

Rare and elusive signals among large backgrounds.
⇒ ML has high sensitivity

Hallin et al. [2109.00546]
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Why is machine learning so popular for high-energy physics?
Data volume Data complexity Signal detection

Computing budget
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Simulation & analysis are computationally expensive.
⇒ ML is fast

https://twiki.cern.ch/
twiki/bin/view/
CMSPublic/CMSOffline
ComputingResults
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Why is machine learning so popular for high-energy physics?
Data volume Data complexity Signal detection Speed
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Increasing interest

We see about 300 papers / year.
⇒ ML is everywhere, as there are no off-the-shelf solutions

via “The INSPIRE REST API”

Interest
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Why is machine learning so popular for high-energy physics?
Data volume Data complexity Signal detection Speed
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ML is fun

⇒ Like Galileo Galilei looking through the telescope for the first time!
Additionally: Big players develop and maintain python packages, which makes research on our end much easier

via midjourney: “Albert Einstein
smiling while having fun coding”
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Past Highlight: 1st (online) meeting
22 November 2023 https://indico.cern.ch/event/1349057/
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Current Highlight: 1st general meeting I.

February 28th, 2024Luca Cadamuro (IJCLab - CNRS/IN2P3) Taggers for boosted HH searches within the ATLAS experiment

GN2X

11

ATL-PHYS-PUB-2022-027

Transformer network

Large jet features : pT/η/m 

20 low-level track features 
(momentum, geometry, 
quality)

Primary task (jet flavour identification) + 
auxiliary tasks

Embedding 
representation

Transformer 
Encoder 

■ Evolution of GN1 architecture (based on GNN)


■ 4 target flavour classes (bb, cc, top, QCD)


■ Training done on ~60M jets

SUMMARY

17

1.  Trees are efficient & useful

for learning high-dimensional 

SMEFT dependence

2. Equivariant gNNs give access to

the linear SMEFT term in hadronic

final states

[arXiv: 2401.10323]

[arXiv:2107.10859, arXiv:2205:12976]

𝑝𝑝 → 𝜇1𝜇2: SM vs SM+Z’/EFT    𝑝34, 𝑝35, 𝜂4, 𝜂5, Δ𝜙 , 	 SUSY (8d), HIGGS (21d)

𝑁 𝑅 = 2×106, 𝑁7 = 10(	 𝑁 𝑅 = 10(, 𝑁7 = 5×10(

   Data: https://zenodo.org/records/4442665

131st COMETA General Meeting - Izmir 2024
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Current Highlight: 1st general meeting II.

Machine-learned MEM

31
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Best of two worlds? 

‣ The ultimate global EFT fit combines binned and multivariate unbinned ML 
observables 

‣ We need a framework that connects them

Training length: 104 epochs for all volumes. Saturates fast
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Shallow 
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Deep NNs 
(RNNs / Sets)

Graph NNs
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early Run 2

full Run 2

late Run 2 / 
early Run 3

State of the 
art 

In HH analyses

In the triggerML is transforming the way we do physics 
and the H(bb) results that are now key driver 

for our HH / YH search programs

Boosted: 
Obs (exp): 9.9 (5.1) 
Resolved: 

Obs (exp): 5.4 (8.1) 

Obs (exp): 3.8 (7.8)

3x - 5x improvements! 
(2x from )ℒ

from Nicole Hartman
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Best of two worlds? 

‣ The ultimate global EFT fit combines binned and multivariate unbinned ML 
observables 

‣ We need a framework that connects them

Training length: 104 epochs for all volumes. Saturates fast
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Conclusion

Shallow 
NNs / BDTs

Deep NNs 
(RNNs / Sets)

Graph NNs

Transformers

early Run 2

full Run 2

late Run 2 / 
early Run 3

State of the 
art 

In HH analyses

In the triggerML is transforming the way we do physics 
and the H(bb) results that are now key driver 

for our HH / YH search programs

Boosted: 
Obs (exp): 9.9 (5.1) 
Resolved: 

Obs (exp): 5.4 (8.1) 

Obs (exp): 3.8 (7.8)

3x - 5x improvements! 
(2x from )ℒ

from Nicole Hartman
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Future Highlight: 2nd (online) meeting

“Normalizing Flows for Particle Physics” date tbd: https://lettucemeet.com/l/OnmW6

One afternoon of talks of 20min + questions, and overall discussion session

preliminary agenda:
Sofia Palacios-Schweitzer on unfolding
Kim Nicoli on reweighting and importance sampling for lattices
Ramon Winterhalder on multichannel importance sampling for MadGraph
Claudius Krause on calorimeter shower simulation
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“Short-term” future: Next steps

Deliverable for 1st year:
Definition of common benchmarks to develop algorithms for COMETA

my suggestion: 1 ATLAS / 1 CMS (?)

possible topics:

jet/event topology tagging
polarization
simulation

jet substructures
track reconstruction
(rare) signal detection

In any case: We need realistic, public data!
Short-term associations are still an entry barrier, especially from outside HEP!
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“Mid-term” future

Upcoming COMETA topical workshops:
on Effective Field Theory in Multiboson Production, Padova, Italy, 10–11 June 2024

⇒ https://indico.cern.ch/event/1358085/

on Vector-Boson Polarisations, Toulouse, France, 23–24 September 2024
⇒ https://indico.cern.ch/event/1371888/

on Boosted Hadronic Bosons, Vienna, Austria, Winter 2024/2025
⇒ stay tuned!

Once we have the benchmark challenges:
advertize inside and outside of HEP
organize hackathlons
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WG2 — Technological Innovation in Data Analysis
If you have not already, please join COMETA and WG2

⇒ https://www.cost.eu/actions/CA22130/

Discuss ideas / requests / questions with us!
We should start discussing a set of well-defined problems (and their datasets) that
we want to tackle!
The pace of ML industry is incredible ⇒ we will try to pull that into HEP and
multiboson physics!
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