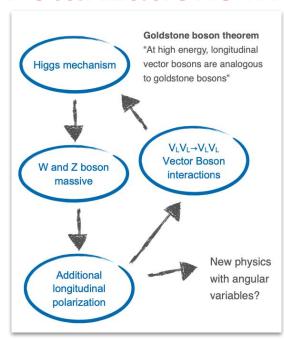
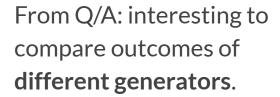
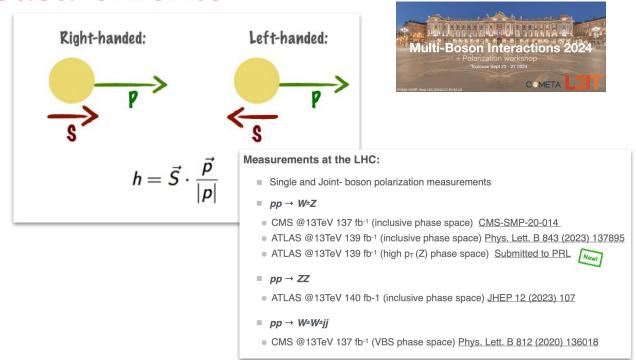


Summary and plans for WG3 activities

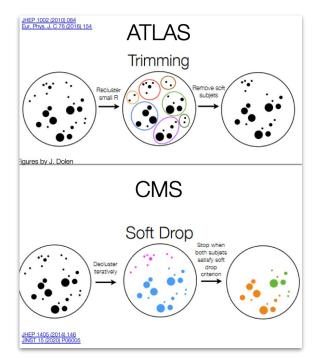

Valentina Cairo (CERN), Matteo Presilla (KIT) 1st COMETA General Meeting, Izmir




Huge THANK YOU to all the speakers for their wonderful talks!

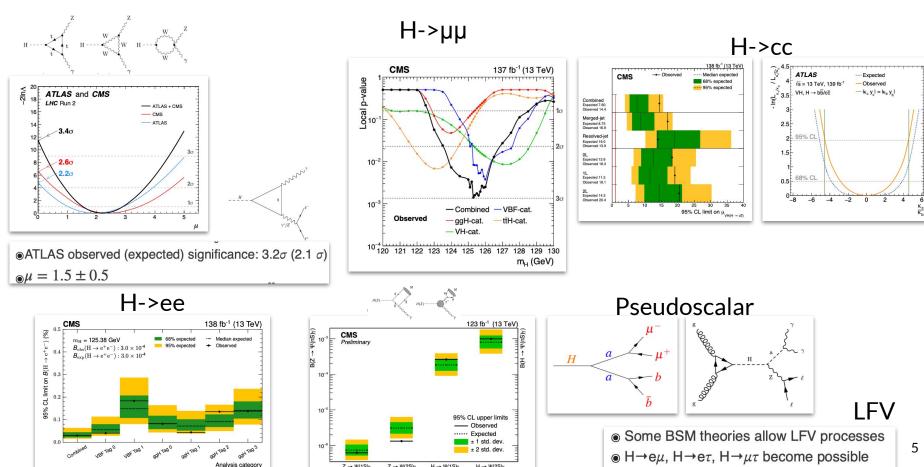
Polarizations measurements

- With our current data we are already able to probe the polarization fractions in VV production.
 - Results include the first evidence or observation of double longitudinally polarized gauge bosons in VV production
 - Big limiting factor for our measurements is the modelling of the polarization templates! → theory community is actively working on the topic!
 - VBS production still severely limited by data statistics, but already showing promise in same-sign WW
 production. A lot can be expected as we gather more data!

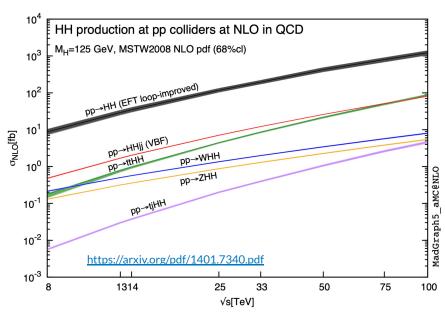

Jet substructures in VBS/VBF

Key elements among various techniques

- Grooming →
- Mass
- Substructure moments
- Pile-up mitigation
- Quark-gluon tagging

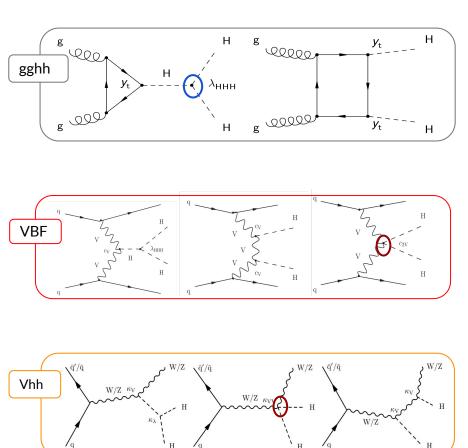

Usage in LHC Run 2 analyses:

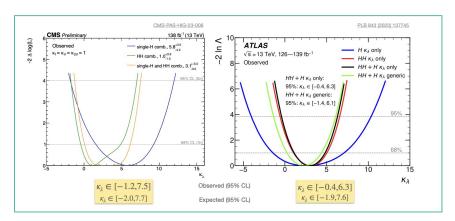
CMS WW, WZ and ATLAS VV



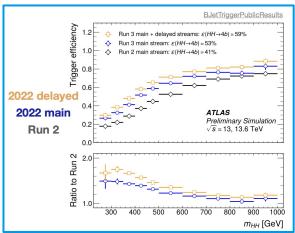
From Q/A: One of the issues in the future might be theory uncertainties, how to address it? Experiments typically look at comparison between generators for instance to check stability => to expand and elaborate during WG3 activities (see also session 3 panel discussion)

Exotic Higgs (and rare Higgs decays)

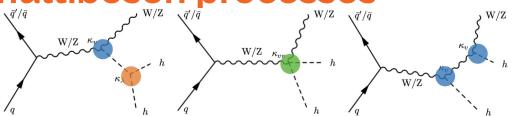

hh production modes


With full Run 2, possible to target also **subdominant** production modes

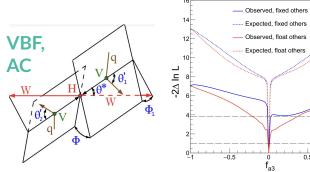
→ Diagrams also involve a different couplings


Exp. observation very hard, but small modifications to VVhh would lead to big changes in σ

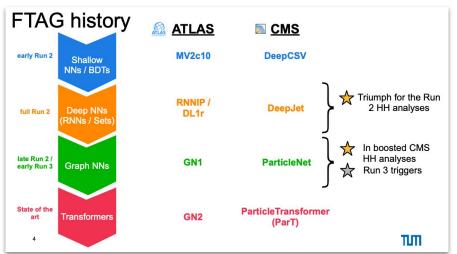
multi-Higgs

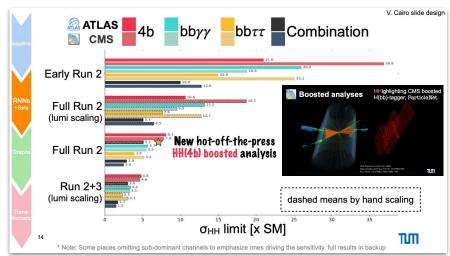


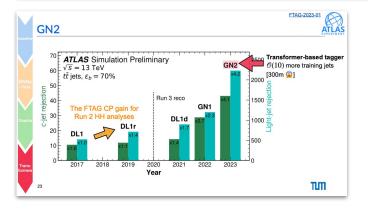
- Combined results: HH signal strength limit & Constraints on self-coupling
- highlights from ATLAS (HH \rightarrow bb $\bar{\gamma}\gamma$) and CMS (HH \rightarrow 4b)
- Trigger challenges and recent related developments in Run 3 (GN2 b-tagging - ATLAS, ParticleNet b-tagging -CMS)


VVh, Vhh, and rarest multiboson processes

- → Rare Vhh production
 - non-resonant => SM and k-framework resonant => sensitivity to specific BSM scenarios
- → Search for anomalous effects, in the tensor structure of the H interactions with electroweak bosons (HVV):
 - matrix element likelihood approach &/or a neural network to optimize the measurement of anomalous couplings, as well as interpretation in terms of EFT scenarios
- → Novel approach to aQGC from VVhh
 - competitive to traditional VBS probes
 - new possibile signatures to explore

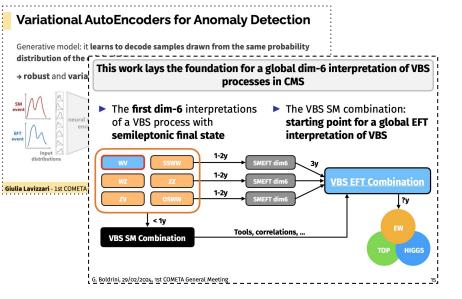

CMS Preliminary


138 fb⁻¹ (13 TeV)



	VBS W [±] V semileptonic		VBF HH→ $b\overline{b}b\overline{b}$	
Coeff.	no unitarity	w/ unitarity	no unitarity	w/ unitarity
$f_{ m M0}/\Lambda^4$	[-0.47, 0.47]	[-0.96,1.02]	[-0.43, 0.43]	[-0.90,0.87]
$f_{ m M1}/\Lambda^4$	[-1.5, 1.5]	[-2.3, 2.4]	[-1.7, 1.7]	[-3.5, 3.5]
$f_{ m M2}/\Lambda^4$	[-0.69, 0.68]	[-2.1, 2.1]	[-0.62, 0.61]	[-1.7, 1.7]
$f_{ m M3}/\Lambda^4$	[-2.5, 2.4]	[-6.8, 6.3]	[-2.4, 2.4]	[-6.5, 6.6]
$f_{ m M4}/\Lambda^4$	[-1.4, 1.4]	[-2.4, 2.5]	[-1.8,1.8]	[-3.9, 4.0]
$f_{ m M5}/\Lambda^4$	[-2.0, 2.0]	[-3.0, 3.1]	[-3.2, 3.2]	[-6.9,7.0]
$f_{ m M7}/\Lambda^4$	[-2.4, 2.4]	[-3.5, 3.5]	[-3.5, 3.5]	[-7.1,7.1]
$f_{ m S0}/\Lambda^4$	[-1.8,2.0]	[-2.6,3.3]	[-14,13]	1/
$f_{ m S1}/\Lambda^4$	[-2.4, 2.4]	[-5.8, 6.1]	[-5.1, 4.5]	/
$f_{ m S2}/\Lambda^4$	[-2.3,2.4]	[-4.8,5.2]	[-8.1,7.1]	/

Flavor tagging performances



- Favour tagging: crucial ingredient for HH searches and active area of innovation
 - Any improvements in flavour tagging take us a step closer to HH evidence
- Large platform for Physics+ML interplay
- Boosted techniques unlocking searches in previously unexplored regimes

inputs from other sessions

- Theory session
- Short-talks session

How do we make our predictions useful for the experiment?

- Dominant $\mathcal{O}(\alpha^7)$ corrections expensive, can't be done with MCs like Madgraph5_aMC@NLO
- MoCaNLO produces histograms for arbitrary observables \mathcal{O} into n bins:

$$\left\{\mathcal{O}_{\mathsf{L}}^{i},\ \mathcal{O}_{\mathsf{R}}^{i},\ \frac{1}{\mathcal{O}_{\mathsf{R}}^{i}-\mathcal{O}_{\mathsf{L}}^{i}}\int_{\mathcal{O}_{\mathsf{L}}^{i}}^{\mathcal{O}_{\mathsf{R}}^{i}}\mathrm{d}\mathcal{O}\frac{\mathrm{d}\sigma}{\mathrm{d}\mathcal{O}}\right\}_{i=1}^{n}$$

- time-consuming, but straightforward: rerun for other cuts and bin limits
- MoCaNLO can't produce unweighted events: technical limitation

Possible avenues with Madgraph5_aMC@NLO/SHERPA:

- run it with Sudakov logs [E. Bothmann, D. Napoletano] [D. Pagani, M. Zaro] [D. Pagani, T. Vitos, M. Zaro]
- compare against exact results

Christopher

Schwan

• if agreement is found, use it and reweight

✓ first implementation of polarized cross sections in Sherpa

✓ higher order QCD corrections @nLO + PS & via multijet-merging

→ first fully-realistic VB polarization samples including higher order QCD effects for VBS processes

Mareen Hoppe

What comes next ...

□ Extension to NLO QCD and approximate NLO EW Applications in phenomenological analyses:
BSM studies (UFO), full NLO effects for VBS processes

| Plant for approximate value of the processes | Number of the processes | N

WG3 activities

- Plans for next meeting:
 - kick-off of our activities on March 27th (±days), focusing on jet substructure developments.
 Target is to gather the experimental COMETA community first, including a report from this GM by one of us group leaders.
 Hybrid format with CERN room.
- Big overlap by definition with other working groups (but apparent smaller room for original exp. R&D outside collaborations) => our activity should focus in improving discussion and clarify various ambiguities and open issues, with an eye on possibile new developments to push

highlight a criticality => stimulate discussion => promote R&D (also opening STSMs calls with pre-defined "titles")

- Practically speaking:
 - joint-hackathons with ML community
 - prepare inputs from HEP open data or available simulations > "simplify" one of our topic of interest (e.g. optimization of a rare multiboson coupling measurement with delphes-based samples
 - Theory/Exp talks (also ML/Exp talks) focused on the major aspects of the (similar to collider-cross-talks format)
 - sectors in which we already have expertise in COMETA (from this gm experience)
 - VHH resonant searches, new models, new sectors and more investigation on EFT/ACs/couplings modifiers interpretation (despite being something already covered by LHC Higgs WG)
 - New theory developments in the VBS physics/
 - Di-boson polarized from theory community
 - o Pheno studies on unexplored production HH/VV production and decay modes towards HL-LHC
 - Would be an interesting input to the European Strategy update

thank you!