

Contribution ID: 893 Type: Poster

Discriminating cluster configurations in ²⁰Ne in central Ne+Ne Collisions

The initial condition in relativistic heavy-ion collisions is sensitive to the nuclear structure of the colliding nuclei. Experimental observations in U+U and isobar collisions have revealed nuclear structure effects, such as deformation or neutron skin. For smaller colliding systems such as 20 Ne+ 20 Ne collisions, where the number of nucleons is limited, cluster models are typically used to describe the nuclear structure. We study the 5α and α + 16 O cluster structure inside 20 Ne within the microscopic Brink cluster model. Our study presents a full analytical calculation of eccentricities ε_n and ε_n -related observables in most central Ne+Ne collisions. We demonstrate that the normalized symmetric cumulant NSC(3, 2) and the Pearson correlation coefficient $\rho(\varepsilon_3^2, \delta d_\perp/d_\perp)$ can enable us to study which potential cluster configuration is more significant in 20 Ne. Our findings offer a novel strategy for identifying cluster structures inside 20 Ne through the future Ne+Ne collision experiment at the LHC.

Category

Theory

Collaboration (if applicable)

Author: LI, Pei (Fudan University)

Co-authors: Mr ZHOU, Bo (Fudan University); Mr MA, Guoliang (Fudan University)

Presenter: LI, Pei (Fudan University)

Session Classification: Poster session 1

Track Classification: Initial state of hadronic and electron-ion collisions & nuclear structure