Quark Matter 2025

Contribution ID: 249

Type: Poster

Strange resonances shine in NA61/SHINE

NA61/SHINE is a multi-purpose, fixed-target hadron spectrometer at the CERN SPS. Its research program includes studies of strong interactions as well as reference measurements for neutrino and cosmic-ray physics. A significant advantage of NA61/SHINE over collider experiments is its extended coverage of phase space available for particle production. This includes the entire projectile hemisphere of the collision, with no low- p_T cut-off.

The energy and system-size dependence of strangeness production plays an essential role in studies of the transition from confined to deconfined matter. At the same time, resonance production is a key observable to study the dynamics of colliding systems at high density. With its zero net strangeness and its valence structure composed predominantly of s and \bar{s} valence quarks, the $\phi(1020)$ meson will not be sensitive to strangeness-related effects in a purely hadronic scenario, but will behave like a doubly-strange particle in a partonic system. On the other hand, the $K^*(892)^0$ meson brings information on the time evolution of the hadronic phase, with the $K^*(892)^0$ to charged kaon production ratio allowing to estimate the time between chemical and kinetic freeze-outs.

This talk presents the first-ever results on $\phi(1020)$ and $K^*(892)^0$ meson production in *intermediate-size* systems at the CERN SPS, that is, central Ar+Sc collisions at beam momenta of 40A, 75A, and 150A GeV/c ($\sqrt{s_{NN}} = 8.8$, 11.9, and 16.8 GeV, respectively). The presented results include transverse momentum and transverse mass spectra, double-differential rapidity- p_T distributions, p_T -integrated rapidity spectra, mean multiplicities, and particle ratios. These are compared to data on Pb+Pb and p+p collisions. The discussion of open and hidden strangeness production enhancement, as well as the time between freeze-outs and rescattering is included in the talk. We also show the comparison with several microscopic models, demonstrating their overall failure in describing these new measurements.

Category

Experiment

Collaboration (if applicable)

NA61/SHINE

Author: Dr MARCINEK, Antoni (Polish Academy of Sciences (PL))Presenter: Dr MARCINEK, Antoni (Polish Academy of Sciences (PL))Session Classification: Poster session 2

Track Classification: Light and strange flavor physics & nuclei