

Contribution ID: 250

Type: Poster

Disentanglement of soft and hard origins of mean $p_{\rm T}$ correlations in ALICE at the LHC.

ALICE data recorded from pp collisions at $\sqrt{s} = 13$ TeV are analyzed to study the mean transverse momentum (p_T) fluctuations. The study is motivated by the idea that non-monotonic changes in p_T correlations with varying energy, if observed, may be taken as an indicator for the QGP formation. The mean p_T fluctuations are studied in terms of the two-particle correlator, $\sqrt{C_m}/M(p_T)_m$, which measures the strength of such fluctuations in units of mean p_T . The dependence of $\sqrt{C_m}/M(p_T)_m$ on particle multiplicity in varying p_T window widths and positions has been analyzed. A study of soft, intermediate and hard p_T would significantly impact on understanding of equilibrium and thermal (radial flow), as well as non-thermal (jets/minijets) sources for p_T fluctuations.

A decreasing trend in correlator values with increasing charged particle multiplicity has been observed, following a power-law pattern. The dependence of the power-law coefficient on different $p_{\rm T}$ ranges has also been analyzed. To further investigate collective effects, within a common multiplicity range, correlators have been studied across different collision systems, such as p–Pb and Pb–Pb at $\sqrt{s_{\rm NN}} = 5.02$ TeV and Xe–Xe at $\sqrt{s_{\rm NN}} = 5.44$ TeV. The findings are compared with predictions from Monte Carlo models, like PYTHIA (pQCD string) and EPOS (core–corona), to gain further insight.

Category

Experiment

Collaboration (if applicable)

ALICE

Author: Ms ALI, Bushra (Aligarh Muslim University (IN))

Co-authors: AHMAD, Shakeel (Aligarh Muslim University (IN)); BASU, Sumit (Lund University (SE))

Presenter: Ms ALI, Bushra (Aligarh Muslim University (IN))

Session Classification: Poster session 2

Track Classification: Collective dynamics & small systems