

Contribution ID: 423

Type: Poster

Investigating the $\psi(2S)/J/\psi$ production ratio in high-multiplicity pp collisions at \sqrt{s} = 13.6 TeV with ALICE

Quarkonium production in hadronic collisions is a complex process, driven by hard-scale phenomena, such as the creation of quark-antiquark pairs during the initial hard scatterings. Studying the $\psi(2S)$ to J/ ψ ratio as a function of charged particle multiplicity provides valuable insights into the mechanisms governing quarkonium formation in high-energy collisions. Since $\psi(2S)$ is an excited state of charmonium with a lower binding energy and was shown to have in Pb-Pb collisions a higher suppression rate than J/ ψ , examining their relative production in high-multiplicity pp collisions is of particular interest. In this work, we present a comprehensive analysis of the $\psi(2S)/J/\psi$ production ratio as a function of charged particle multiplicity in pp collisions at a center-of-mass energy of $\sqrt{s} = 13.6$ TeV, using data collected by the ALICE detector at the Large Hadron Collider (LHC). By examining this ratio across different multiplicity classes, we aim to explore the potential influences of a particle-rich environment on quarkonium production. The experimental results will be compared with the available theoretical models.

Category

Experiment

Collaboration (if applicable)

ALICE

Authors: BEHERA, Debadatta (Indian Institute of Technology Indore (IN)); SAHOO, Raghunath (Indian Institute of Technology Indore (IN))

Presenters: BEHERA, Debadatta (Indian Institute of Technology Indore (IN)); SAHOO, Raghunath (Indian Institute of Technology Indore (IN))

Session Classification: Poster session 2

Track Classification: Heavy flavor & quarkonia