

Contribution ID: 465 Type: Poster

Local multiplicity fluctuations in the charged particles produced in Xe–Xe collisions at $\sqrt{s_{NN}}=5.44$ TeV with ALICE

A two-dimensional intermittency analysis performed for the charged particles produced in (η,φ) phase space during Xe–Xe collisions at $\sqrt{s_{\mathrm{NN}}}=5.44$ TeV recorded with the ALICE detector at LHC is presented. A well-known characteristic of the critical behaviour of the system undergoing phase transition is that it shows fluctuations of all scales. Local multiplicity fluctuations are analyzed using normalized factorial moments (NFM) F_{q} for q=2,3,4 and 5. For the systems with dynamical fluctuations F_{q} shows scaling behaviour with increasing numbers of bins M whereas scaling is also characteristic of the systems with self-similar and fractal nature. F_{q} moments show scaling behaviour as the binning in the phase space region increases.

For the second-order phase transition in the Ginzburg-Landau formalism $F_{\rm q}$ for q>2 shows a linear dependence on the second-order normalized factorial moments (F_2) , termed as F-scaling. The scaling exponent ν , which quantifies the fluctuations in the particle density distributions, was determined for various $p_{\rm T}$ intervals and bin widths in the soft- $p_{\rm T}$ region. Observations and results from this study and comparison with Pb–Pb results at LHC energies will be discussed.

Category

Experiment

Collaboration (if applicable)

ALICE

Authors: GUPTA, Ramni (University of Jammu (IN)); BANOO, Zarina (University of Jammu (IN))

Presenter: GUPTA, Ramni (University of Jammu (IN))

Session Classification: Poster session 1

Track Classification: Correlations & fluctuations