Quark Matter 2025

Contribution ID: 10

Type: Poster

Mapping the longitudinal structure of QGP via nuclear deformations in heavy ion collisions

The initial longitudinal structure of QGP is essential for understanding its formation, evolution, and properties in heavy-ion collisions. However, current flow decorrelation methods are limited by non-flow contamination, restricting access to the QGP's full longitudinal profile. By comparing collisions involving nuclei of similar masses but different deformations, we introduce a new approach that varies the initial conditions independent of non-flow. This method enabled us to uncover multiple components of the longitudinal structure of elliptic flow (v_2) [1] and to develop a novel technique for extracting flow decorrelations across the entire rapidity range [2]. We demonstrate the robustness of our approach using full 3D hydrodynamic and transport models. We reveal that while deformation enhances the overall magnitude of v_2 , it leaves the long-range component of its longitudinal profile unchanged. Additionally, we discovered two distinct components of the longitudinal structure: a global twisted geometry and localized rapidity fluctuations contributing to shortand medium-range flow decorrelations. This study presents a new way to disentangle long- and short-range flow decorrelations from non-flow backgrounds, providing a concrete example of how leveraging the structure differences between isobar nuclei can help us gain new insights into the initial conditions of heavy-ion collisions.

- [1] Sources of longitudinal flow decorrelations in high-energy nuclear collisions, https://arxiv.org/abs/2408.15006
- [2] Longitudinal Structure of Quark-Gluon Plasma Unveiled Through Nuclear Deformations, https://arxiv.org/abs/2405.08749

Category

Theory

Collaboration (if applicable)

Authors: LUMENG, Liu (Fudan University); HUANG, Shengli; Dr ZHANG, Chunjian (Fudan University); JIA, Jiangyong (Stony Brook University (US)); BHATTA, Somadutta (Stony Brook University (US))

Presenter: LUMENG, Liu (Fudan University)

Session Classification: Poster session 1

Track Classification: Initial state of hadronic and electron-ion collisions & nuclear structure