Quark Matter 2025

Contribution ID: 916

Type: Poster

Relativistic second-order spin hydrodynamics: A correlation function approach using Zubarev's non-equilibrium statistical operator

Utilizing Zubarev's nonequilibrium statistical operator, we derive the second-order expression for the dissipative tensors in relativistic spin hydrodynamics, namely the rotational stress tensor ($\tau_{\mu\nu}$), boost heat vector (q_{μ}), shear stress tensor ($\pi_{\mu\nu}$), and bulk viscous pressure (Π). The emergence of the first two terms, $\tau_{\mu\nu}$ and q_{μ} , is attributed to the inclusion of the antisymmetric part in the energy-momentum tensor. In this work, we also treat the spin density ($S^{\mu\nu}$) as an independent thermodynamic variable alongside energy density and particle density, leading to two additional transport coefficients characterized by the correlation between $S^{\mu\nu}$ and $\tau_{\mu\nu}$ and vice-versa. Finally, we derive the evolution equations for the aforementioned tensors— $\tau_{\mu\nu}$, q_{μ} , $\pi_{\mu\nu}$, and Π .

Category

Theory

Collaboration (if applicable)

Author: Mr TIWARI, Abhishek (Indian Institute of Technology Roorkee)
Co-author: Prof. PATRA, Binoy Krishna (Indian Institute of Technology Roorkee)
Presenter: Mr TIWARI, Abhishek (Indian Institute of Technology Roorkee)
Session Classification: Poster session 2

Track Classification: Collective dynamics & small systems