

Contribution ID: 242

Type: Poster

## Event-by-event multiharmonic $v_n$ correlations in heavy-ion collisions at $\sqrt{s_{NN}} = 5.36$ TeV with ALICE

In ultrarelativistic heavy-ion collisions, several nontrivial physics phenomena (e.g. collective anisotropic flow, jet quenching, etc.) can lead to persistent event-by-event azimuthal anisotropies in particle distributions, which are traditionally quantified with Fourier harmonics  $v_n$ . Besides the conventional measurements of individual  $v_n$  harmonics, further independent information about different stages in heavy-ion collisions can be extracted from multiharmonic  $v_n$  correlations, using recently developed Symmetric Cumulants (SC) and Asymmetric Cumulants (AC). These novel observables are particularly suitable for Bayesian studies, after it was demonstrated that they exhibit a better sensitivity to model parameters than the previously used observables.

Of particular interest is a differential measurement of SC and AC observables as a function of transverse momentum  $p_{\rm T}$ , because this enables the separation of the contribution to  $v_n$  harmonics from collective flow at low  $p_{\rm T}$  and jet quenching at large  $p_{\rm T}$ .

This contribution presents the differential measurements of SC and AC observables in Run 3 Pb–Pb collisions at  $\sqrt{s_{\rm NN}} = 5.36$  TeV as a function of kinematic variables. Dependence on collision energy is investigated as well by comparing results for SC and AC observables obtained from Pb–Pb collisions in Run 3 at  $\sqrt{s_{\rm NN}} = 5.36$  TeV and Run 1 at  $\sqrt{s_{\rm NN}} = 2.76$  TeV.

## Category

Experiment

## Collaboration (if applicable)

ALICE

Author: BILANDZIC, Ante (Technische Universitaet Muenchen (DE))
Presenter: BILANDZIC, Ante (Technische Universitaet Muenchen (DE))
Session Classification: Poster session 1

Track Classification: Correlations & fluctuations