

Contribution ID: 1053 Type: Poster

Search for Collectivity in Photo-nuclear Processes at RHIC using STAR Detector

Investigating collective behavior due to the formation of a fluid-like medium in small collision systems has been a significant focus in the field. A tell-tale signature of this would be the medium's response to the initial state in small collision systems, as predicted by fluid-dynamic models.

Recent RHIC studies of small systems have shown a hierarchy of elliptic anisotropy coefficients ($v_2(^3\text{He+Au}) \sim v_2(\text{d+Au}) > v_2(p+\text{Au})$) suggesting fluid-dynamic behavior even in the smallest systems. This raises the question: could a photo-nuclear collision, such as γ +Au also exhibit signatures of collectivity? Notably, signatures of collectivity have been investigated in high-multiplicity, high energy γ +p/Pb collisions at the LHC.

This poster explores anisotropic flow in γ +Au processes at RHIC by triggering ultra-peripheral Au+Au collisions at $\sqrt{s_{NN}}=200$ GeV. At this collision energy, the maximum photon-nucleon center of mass energy $W_{\gamma N}^{\rm max}\approx 34.7$ GeV [1], an energy between d+Au collisions at $\sqrt{s_{NN}}=19$ GeV and $\sqrt{s_{NN}}=39$ GeV, previously performed at RHIC. For both γ +Au and d+Au, the exact multiplicity range is accessible at STAR, making d+Au a suitable baseline system for comparison. Furthermore, the STAR detector's extended rapidity coverage, with mid and forward rapidity upgrades ($|\eta|<1.5$ and $2.1<|\eta|<5.1$) enables the triggering and analysis of photo-nuclear processes. Preliminary results will present v_2 and v_3 in γ +Au collisions at multiplicities and energy comparable to those of d+Au, where collectivity has already been observed. These results will provide new insights into collectivity in small collision systems, emphasizing the role of initial-state effects and collective behavior in understanding the evolution of the fluid-like medium created in various collision systems at RHIC.

References

 $[1] \ A.J. \ Baltz \ et \ al. \ The \ physics \ of \ ultraperipheral \ collisions \ at \ the \ LHC. \ Physics \ Reports, \ 458 \ (1):1-171, \ 2008 \ and \ (1):1-171, \ 2008$

Category

Experiment

Collaboration (if applicable)

STAR Experiment

Author: PAUL, Souvik (Stony Brook University)

Presenter: PAUL, Souvik (Stony Brook University)

Session Classification: Poster session 2

Track Classification: Collective dynamics & small systems