Quark Matter 2025

Contribution ID: 983

Type: Poster

Production of ³H and ⁴H in Au+Au collisions at $\sqrt{s_{NN}}$ = 3.2, 3.5, 3.9 and 4.5 GeV at STAR

Hypernuclei are bound states of nuclei with one or more hyperons. Hypertriton ${}^{3}\text{H}(np\Lambda)$ and ${}^{4}\text{H}(nnp\Lambda)$ are the two simplest observed hypernuclei. The ${}^{3}\text{H}$ is the loosest bound hypernucleus, with a Λ binding energy of ~0.1 MeV, while the ${}^{4}\text{H}$ is more strongly bound, with a Λ binding energy of ~2 MeV. Precise measurements of ${}^{3}\text{H}$ and ${}^{4}\text{H}$ yields in heavy ion collisions provide important guidance on the understanding of hypernuclei production mechanisms as well as the role of the hyperon-nucleon (*Y*-*N*) interaction in hypernuclei formation. The second phase of the Beam Energy Scan program at RHIC (BES-II) offers a great opportunity to investigate collision energy and system size dependence of hypernuclei production.

In this poster, the measurements of the production yields of ³H and ⁴H and their ratios to Λ in Au+Au collisions at $\sqrt{s_{NN}}$ = 3.2, 3.5, 3.9 and 4.5 GeV will be presented. The rapidity (y) and centrality dependence of the production yields (dN/dy) of ³H and ⁴H will also be reported. The physics implications of these results will be discussed together with theoretical model calculations.

Category

Experiment

Collaboration (if applicable)

STAR Collaboration

Author: Dr JI, Yuanjing (GSI - Helmholtzzentrum fur Schwerionenforschung GmbH (DE) & Lawrence Berkeley National Laboratory)

Presenter: Dr JI, Yuanjing (GSI - Helmholtzzentrum fur Schwerionenforschung GmbH (DE) & Lawrence Berkeley National Laboratory)

Session Classification: Poster session 2

Track Classification: Light and strange flavor physics & nuclei