

Contribution ID: 886 Type: Poster

## Exploring Electromagnetic-field Effects using Charge-Dependent Directed Flow from BES-II Data at STAR

Charge-dependent directed flow can reveal the influence of electromagnetic fields in heavy-ion collisions. For instance, Faraday induction is predicted to contribute negatively to  $\Delta(dv_1/dy)$ , defined as the difference in the slope of rapidity-odd directed flow  $(dv_1/dy)$ , between positively and negatively charged particles. Recent STAR data from peripheral Au+Au collisions at  $\sqrt{s_{NN}}=200$  and 27 GeV supported this scenario. In this poster, we present the STAR BES-II results of  $v_1$  and  $\Delta v_1$  for  $\pi^\pm$ ,  $K^\pm$ ,  $p(\bar{p})$  and  $\Lambda(\bar{\Lambda})$  as functions of rapidity, transverse momentum  $(p_T)$ , and centrality at midrapidity in Au+Au collisions at  $\sqrt{s_{NN}}=19.6$ , 17.3, 14.6, 11.5, 9.2 and 7.7 GeV. In peripheral collisions, the sign of  $\Delta(dv_1/dy)$  is consistent with the expectation from the dominance of Faraday+Coulomb effect over Hall+transported quark effect, and  $\Delta(dv_1/dy)$  becomes more negative at lower collision energies, as expected from a longer lifetime of the electromagnetic field and/or a shorter lifetime of the fireball at these energies. We also discuss the expected electromagnetic-field effects on the constituent quarks in  $\Lambda$  and  $\bar{\Lambda}$ , and consequently on their  $\Delta(dv_1/dy)$  within the coalescence framework.

## Category

Experiment

## Collaboration (if applicable)

STAR

Author: DASH, ADITYA PRASAD (University of California Los Angeles)Presenter: DASH, ADITYA PRASAD (University of California Los Angeles)

Track Classification: Collective dynamics & small systems