PHYSICS BEYOND COLLIDERS
Lecture 1: Experimental Overview

...a short glimpse of a very lively and diverse landscape
with emphasis on CERN projects

Lowering the energy...
...from LHC collisions to non-accelerator experiments

+ a few insights into
R&D for longer-term future PBC facilities

NB: credit to PBC working groups and projects for most plots shown here
More information on https://pbc.web.cern.ch/
Excerpt from the 2016 PBC mandate:
“Explore the opportunities offered by the CERN accelerator complex and infrastructure to address some of today’s outstanding questions in particle physics through experiments complementary to high-energy colliders and other initiatives in the world.”

Deliverables to EPPSU:
PBC QCD Report: arXiv:1901.04482
PBC Accelerator Reports:
http://cds.cern.ch/collection/PBC%20Reports?ln=en
Post-EPPSU PBC RELAUNCH

Updated mandate taking into account EPPSU recommendations:
- Increase synergies with cosmology, astroparticle, nuclear and atomic physics
- Strengthen collaboration of CERN with large National Laboratories
- Act as central forum of exchanges between theorists and experimentalists

Post-EPPSU PBC events:

- **March 2021:** First post-EPPSU workshop ([indico](#)):
 relaunch of PBC activities after EPPSU recommendations

- **December 2021:** General working group meeting ([indico](#)):
 PBC updated organization and projects status

- **November 2022:** PBC annual workshop ([indico](#)):
 focus on consolidations and preparations for post-LS3

[Current PBC organization](https://pbc.web.cern.ch/)
The CERN Accelerator Complex

Downwards energy steps:

- LHC collisions
- LHC Fixed Target
- SPS Fixed Target
- PS/Booster facilities
- Non-accelerator experiments
From high to low energies: global BSM landscape

EDM & non-accelerator projects cover the very low-mass domain

SPS beam dumps probe a specific MeV-GeV domain

Precision & rare processes experiments extend reach of high-E colliders

See J. Jaeckel’s lecture
Structure Functions

Unique reach of LHC-Fixed Target with high statistics at high-x / high Q^2

QCD Phase Transition

Unique reach of LHC-FT & SPS in transition region to high-μ_B
STARTING WITH LHC COLLISIONS:

DEDICATED LONG-LIVED PARTICLES (LLP) DETECTORS
LHC-LLP DEDICATED PROJECTS

Pioneered in run 3 by FASER/SND@LHC/milliQan

FASER: Dark photons & TeV neutrinos
480m from ATLAS IP

SND@LHC: TeV neutrinos
Slightly off axis opposite to FASER

milliQan: milli-charged particles
33m from CMS IP
PROPOSED LHC “LARGE ANGLE” LLP FAR DETECTORS

3 detectors of similar concept:

demonstrators and detailed simulations planned during run3

MATHUSLA on CMS surface

ANUBIS in ATLAS access shaft

CODEX-b in LHCb hall
PROPOSED LHC “FORWARD” LLP FAR DETECTORS:

FORWARD PHYSICS FACILITY

Proposal for a dedicated underground cavern aimed at maximizing the HL-LHC physics reach in the forward region (LLPs, ν’s & QCD)

Conceptual design of the infrastructure well advanced

Loi to LHCC expected in 2025
1st ENERGY STEP DOWNWARDS:

LHC FIXED-TARGET (FT@LHC)
FT@LHC: Gas Fixed Target with LHCb

FT@LHC pioneered by LHCb with SMOG gas jets in run 2 and SMOG2 gas storage cell in run 3

Impact of different types of gases (Kr, Xe, O₂, N₂, H₂, D₂) on LHC vacuum system under study

Development of a polarized gas storage cell also ongoing for future spin physics @LHC
FT@LHC: Crystal Fixed Targets

Good progress in the design and preparation of crystal set-ups

Single crystal set-up:
developed for beam cleaning & collimation and possible FT physics

Double crystal set-up:
for measurement of MDM and EDM of short-lived baryons

Proof of Principle set-up in preparation for installation at LHC IR3 during run 3
2ND ENERGY STEP DOWNWARDS:

SPC FIXED-TARGET (FT@SPS)
The WORKHORSE of FT@SPS: the SPS NORTH AREA

EHN1: large surface hall with multi-purpose low-I beams
- QCD: NA60++ and NA61++
- BSM: NA64(e,h)

ECN3: unique underground hall for high-I hadron beams
- BSM: NA62(K⁺, BD), HIKE(K⁺,0, BD)
- SHADOWS(BD), SHiP(BD)

EHN2: surface hall with unique high-E/high-I µ beam
- QCD: AMBER, MUonE
- BSM: NA64(µ)

The planned consolidation of the NA provides an opportunity for new experimental projects.
AMBER “QCD FACILITY” (COMPASS++)

Short term (run3): proton radius puzzle with μ-p elastic scattering

Longer term (excerpts):

With existing beams:
Unique opportunity for higher precision pion structure measurements

With upgraded K-beam:
Comprehensive measurement of strange spectroscopy
New idea introduced within PBC:

Direct measurement of HVP contribution to \((g-2)_\mu\) with \(\mu\)-e elastic scattering

Complementary to predictions based on dispersion relation with \(e^+e^-\) data and on lattice QCD

Very challenging experimentally: \(10^{-5}\) (relative) precision required on cross-section

First data taking aimed for during run 3
Ongoing (run 3):
- First study of open charm close to expected CP-region.
- Also unique measurements for ν-beams and cosmic rays

Post-LS3: (preliminary ideas)
- Finer grain 2-D scan to study onset of fireball → light ions production under study by CERN
- Antiproton and low-E beams for baryon stopping studies
- Continued measurements for ν-beams and cosmic rays
Revival of NA60 concept to measure caloric curve of 1st order QCD transition with low-E dimuons

New location found in EHN1 hall to avoid conflict with users of ECN3
Ultra-rare K^+ decays

Regular data taking since 2016

- **Run 2**: 20 events seen for 17 expected (10 SM + 7 BG)
- **Run 3**: detector upgraded to reach ~100 signal events

Post-LS3 proposal (HIKE):

- K^+ intensity increase by factor ~4, followed by K^0 beam:
 - K^0 rare decays complementary to K^+ decays for BSM searches.

Diagram:

- **75 GeV/c K^+ (6%)**
- **Hadron Beam 800 MHz**
- **Kaon identification in CEDAR**
- **Measure Kaon:**
 - Time
 - Angles
 - Momentum
- **GTK**
- **CHANTI**
- **Vetos**
- **π Identification**
- **RICH**
- **LKR**
- **MUV**
- **Decay Region 65m**
- **STRAW Tracker**
See PBC ECN3 Report-2023-003

Two Highlights:

CKM matrix unitarity test

LFU: Kaons complementary to B mesons
Protons or electrons

Heavy target + detector

Absorber

Decay volume

Spectrometer

FT@SPS: BEAM DUMPS (BD)

Visible decay to SM particles

signal $\propto \epsilon^4$

Critical: BG control

Recoil e/N from rescattering

signal $\propto \epsilon^4$

Critical: BG control

Missing energy from invisible decays

signal $\propto \epsilon^2$

Critical: initial particle and pileup control

NB: reach in (m,\epsilon) depends on many parameters:

beam energy & intensity, decay vessel length, signatures, background ...
HIDDEN SECTOR MAIN PRODUCTION MODES IN A BEAM DUMP

Primakov/Bremstrahlung:
Mass reach mainly in sub-GeV domain, weakly dependent on beam energy

Meson decays:
Mass reach in multi-GeV domain dependent on accessible meson mass thresholds (K,D,B)

EXPERIMENTAL VISIBLE SIGNATURES

<table>
<thead>
<tr>
<th>Models</th>
<th>Final states</th>
</tr>
</thead>
<tbody>
<tr>
<td>HNL, SUSY neutralino</td>
<td>$l^+\pi^-$, l^+K^-, $l^+\rho^-\rho^+\rightarrow\pi^+\pi^0$</td>
</tr>
<tr>
<td>Vector, scalar, axion portals, SUSY sgoldstino</td>
<td>l^+l^-</td>
</tr>
<tr>
<td>HNL, SUSY neutralino, axino</td>
<td>$l^+l^-\nu$</td>
</tr>
<tr>
<td>Axion portal, SUSY sgoldstino</td>
<td>$\gamma\gamma$</td>
</tr>
</tbody>
</table>

+ recoil particles or missing energy for rescattering / missing energy methods
MAIN BEAM DUMP PROJECTS OUTSIDE CERN

<table>
<thead>
<tr>
<th>EXPERIMENT</th>
<th>PERIOD</th>
<th>BEAM</th>
<th>PARTICLES ON TARGET</th>
<th>SIGNATURE</th>
<th>MODELS</th>
</tr>
</thead>
<tbody>
<tr>
<td>BDX @JLAB</td>
<td>~2024-25</td>
<td>e 11 GeV</td>
<td>~10^{22}</td>
<td>recoil e</td>
<td>DP, ALPs</td>
</tr>
<tr>
<td>LDMX @SLAC</td>
<td>< 2030</td>
<td>e 4-8 GeV</td>
<td>2 10^{16}</td>
<td>invisible</td>
<td>DP, ALPs</td>
</tr>
<tr>
<td>SBND @FNAL</td>
<td>< 2030</td>
<td>p 8 GeV</td>
<td>6 10^{20}</td>
<td>recoil Ar</td>
<td>DP</td>
</tr>
<tr>
<td>DarkQuest @FNAL</td>
<td>2024</td>
<td>p 120 GeV</td>
<td>$10^{18} \rightarrow 10^{20}$</td>
<td>visible e^+e^-</td>
<td>DP, DS, HNL</td>
</tr>
<tr>
<td>LBND @FNAL</td>
<td>< 2040</td>
<td>p 120 GeV</td>
<td>~10^{21}</td>
<td>recoil e, N</td>
<td>DP, DS, HNL</td>
</tr>
</tbody>
</table>

DP = Dark Photon
DS = Dark Scalar
HNL = Heavy Neutral Lepton
ALP = Axion-Like Particle

Recent dedicated experiments demonstrate a regain of interest for beam dumps
Flavour factories (BELLE II, ...) have also some sensitivity from exotic decays
Beam Dump Projects at CERN

<table>
<thead>
<tr>
<th>EXPERIMENT</th>
<th>PERIOD</th>
<th>BEAM</th>
<th>PARTICLES ON TARGET</th>
<th>SIGNATURE</th>
<th>MODELS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NA64(e)</td>
<td>ongoing</td>
<td>e 100 GeV</td>
<td>~5 10^{12}</td>
<td>invisible & visible e$^+e^-$</td>
<td>DP, ALPs</td>
</tr>
<tr>
<td>NA62-BD</td>
<td>2022-25</td>
<td>p 400 GeV</td>
<td>10^{18}</td>
<td>visible</td>
<td>DP, ALPs</td>
</tr>
<tr>
<td>HIKE/SHADOWS</td>
<td>2030-40</td>
<td>p 400 FeV</td>
<td>5×10^{19}</td>
<td>visible</td>
<td>DP, DS, HNL, ALPs</td>
</tr>
<tr>
<td>BDF/SHiP</td>
<td>2030-50</td>
<td>p 400 GeV</td>
<td>6×10^{20}</td>
<td>recoil & visible</td>
<td>DP, DS, HNL, ALPs</td>
</tr>
<tr>
<td>NA64(µ,h)</td>
<td>> 2024</td>
<td>µ,h > 100 GeV</td>
<td>2×10^{13}</td>
<td>invisible</td>
<td>DZ_μ, ALPs</td>
</tr>
</tbody>
</table>

NB: CERN offers unique opportunities with both lepton and hadron beams. LHCb and LHC-LLP dedicated projects have also sensitivity in similar mass range.

DP = Dark Photon
DS = Dark Scalar
HNL = Heavy Neutral Lepton
ALP = Axion-Like Particle
BD@SPS: NA64

NA64(e):
cheap e-beamdump setup implemented in 2015
on H4 e test beam, now permanent.
Optimized for invisible production,
currently leading the field for dark photons

NA64(μ,h): proposed extensions of the method to other types of beams

μ beams:
test of (g-2)μ interpretations
and μ-coupled dark sector

Hadron beams:
meson decays to invisible particles
and leptophobic dark sector
BD@SPS: NA62 PROTON BEAM DUMP MODE

Some NA62 data taking in beam dump mode during run 3

Achieved by closing the TAX collimator, \(^{10^{18}}\) PoT expected until LS3

Instrumentation of NA62 decay vessel
well adapted to searches in visible decay mode
POST-LS3 BD@SPS PROPOSAL: HIKE & SHADOWS

New SHADOWS detector slightly off axis close to TAX dump collimator would increase acceptance at high mass of a high-intensity beamdump mode of HIKE.

This post-LS3 BD option could cumulate \(\sim 5 \times 10^{19} \) PoT on the HL-LHC timescale.
POST-LS3 BD@SPS PROPOSAL: BDF/SHiP@ECN3

State-of-the-Art Dual Spectrometer for hidden particle searches

High-precision spectrometer for DM scattering + ν_τ physics

Active magnetic muon filter

DM decay vessel

Spectrometer for DM decays

Relocation in ECN3 and re-optimization studied to reduce the overall BDF/SHiP cost
BD@SPS BSM SENSITIVITY: portals to Hidden Sector

A highlight of PBC for EPPSU: definition and wide acceptation of hidden sector benchmark models to compare reach of projects under same assumptions

See FIPs2022 workshop proceedings arXiv:2305.01715 for details
COMPARISONS OF PROJECTS REACH

C. Vallée, CERN, Nov. 2023

PBC academic lecture 1: experimental overview

See PBC ECN3 Report-2023-003

BC1
Dark photon visible decay to SM

BC2
Dark photon decay to scalar DM
\[\alpha_0 = 0.1 \]
\[m_\chi = \frac{1}{3} m_{A'} \]

BC4
Dark scalar mixing with Higgs

BC6
Dark HNL coupling to e
3rd ENERGY STEP DOWNWARDS:

PS AND LOW-E FACILITIES
Many quantum technologies at work for precision measurements: CPT, fundamental constants, axion searches...

ELENA recent upgrade enhances potential for this decade

ANTIMATTER FACTORY

ELENA - 100 keV

BASE, Fundamental properties of the antiproton

ALPHA, Spectroscopy of 1S-2S in antihydrogen

ASACUSA, ALPHA Spectroscopy of GS-HFS in antihydrogen

ASACUSA Antiprotonic helium spectroscopy

ALPHA, AEgIS, GBAR Test free fall/equivalence principle with antihydrogen

PUMA Antiproton/nuclei scattering to study neutron skins
ANTIMATTER FACTORY

Many quantum technologies at work for precision measurements: CPT, fundamental constants, axion searches...

e.g. BASE DM axion searches

Axion signal

Cryogenic resonator

Low noise cryogenic amplifier

Expected limits in IAXO magnet

Six collaborations, pioneering work by Gabrielse, Oelert, Hayano, Hangst, Charlton et al.

BASE, Fundamental properties of the antiproton

ALPHA, Spectroscopy of 1S-2S in antihydrogen

ASACUSA, ALPHA
Spectroscopy of GS-HFS in antihydrogen
Similar technologies as at antimatter factory, with a fundamental physics potential for e.g.

- EW tests
- EDMs
- Spectroscopy of new states
- Nuclear clocks
- ...

EPIC proposal to upgrade ISOLDE to higher energy (2 GeV) and intensity with a new experimental hall.
4th ENERGY STEP DOWNWARDS:

NON-ACCELERATOR EXPERIMENTS
INTERNATIONAL AXION OBSERVATORY
(axion helioscope successor of CAST@CERN)

BabyIAXO precursor approved and in construction at DESY
with CERN PBC support to magnet design

Unique physics reach for ALPs searches
VMB@CERN
Vacuum Magnetic Bi-refringence
Optical set up being developed in Ferrara for a CERN implementation with (HL-)LHC magnets:

Among other studies:
• SC cavities and coating for novel relic axion detection
• Setup for cosmic neutrino background measurement (PTOLEMY)
R&D FOR LONGER-TERM FUTURE PBC FACILITIES

(excerpts)
PROTON EDM RING

COSY at Jülich supported by EPPSU as possible site for developing the project

Many systematics issues to be solved: lattice, deflectors, RF cavities, B-shield, BPMs...

Ongoing precursor experiment at Jülich (magnetic ring)

PROTOTYPE E/B RING

~30 m Ø

Design sensitivity: 4×10^{-29} e.cm

TDR for prototype ring in preparation by CPEDM Collaboration (incl. CERN)
Novel e-Beam: AWAKE++

Electron acceleration on wake fields from proton micro-bunches in a plasma cell

Proof of principle validated with electrons accelerated up to 2 GeV

Could serve the purpose of an electron beam dump experiment located in the CNGS decay tunnel in the post-LS3 era
Novel NEUTRINO BEAMS

Recent new ideas of monitored & tagged ν beams being investigated for neutrino precision measurements and next generation LBL projects

ENUBET:
- ν_e beam monitored from K decays
- Prototyping performed in Neutrino Platform

NuTAG:
- ν_μ beam with $(E_\nu, \theta_\nu, \phi_\nu)$ tagged from individual π decays with HL-LHC silicon trackers
GAMMA FACTORY @LHC

Goal of 10^7 intensity gain vs existing facilities

Important milestone reached within PBC with successful acceleration and storage of Partially Stripped Ions in LHC

Applications in atomic, nuclear, particle and applied physics discussed in many workshops and publications
Many opportunities for forefront physics

beyond LHC and future high-energy frontier colliders!
MAIN PAST BEAM DUMP PROJECTS

<table>
<thead>
<tr>
<th>EXPERIMENT</th>
<th>PERIOD</th>
<th>BEAM</th>
<th>PARTICLES ON TARGET</th>
<th>SIGNATURE</th>
<th>MODELS</th>
</tr>
</thead>
<tbody>
<tr>
<td>E137 @SLAC</td>
<td>80’s</td>
<td>e 20 GeV</td>
<td>2×10^{20}</td>
<td>recoil e</td>
<td>DP, ALPs</td>
</tr>
<tr>
<td>E141 @SLAC</td>
<td>80’s</td>
<td>e 9 GeV</td>
<td>2×10^{15}</td>
<td>visible e$^+e^-$</td>
<td>DP, ALPs</td>
</tr>
<tr>
<td>E774 @FNAL</td>
<td>80’s</td>
<td>e 275 GeV</td>
<td>5.2×10^9</td>
<td>visible e$^+e^-$</td>
<td>DP</td>
</tr>
<tr>
<td>NuTeV @FNAL</td>
<td>90’s</td>
<td>p 800 GeV</td>
<td>2×10^{18}</td>
<td>visible μ</td>
<td>HNL</td>
</tr>
<tr>
<td>NUCAL @Serpukhov</td>
<td>80’s</td>
<td>p 70 GeV</td>
<td>1.7×10^{18}</td>
<td>visible $\gamma\gamma$, e$^+e^-$, $\mu^+\mu^-$</td>
<td>DP, DS, ALPs</td>
</tr>
<tr>
<td>PS191 @CERN</td>
<td>80’s</td>
<td>p 19 GeV</td>
<td>0.8×10^{19}</td>
<td>visible</td>
<td>HNL</td>
</tr>
<tr>
<td>CHARM @CERN</td>
<td>80’s</td>
<td>p 400 GeV</td>
<td>2.4×10^{18}</td>
<td>visible $\gamma\gamma$, e$^+e^-$, $\mu^+\mu^-$</td>
<td>DP, DS, HNL</td>
</tr>
</tbody>
</table>

NB: most past beam dumps were “cheap” by-products of other experiments

DP = Dark Photon
DS = Dark Scalar
HNL = Heavy Neutral Lepton
ALP = Axion-Like Particle
EXPLORATORY STUDY OF HIGHER-ENERGY BEAM DUMPS POTENTIAL

the example of ALPs

PBC projects have a similar reach as for visible A' (similar signatures $\gamma\gamma$ and e^+e^-)

No real breakthrough of LHC/FCC beam dumps:

SPS seems to offer a quite optimal energy-intensity mix in the present context
AMBER\((R_p) \)

\(\mu - p \) elastic scattering

In competition with MUonE on same \(\mu \)-beam in EHN2

→ AMBER Spectrometer (ex-COMPASS)

new AMBER TPC

Proton radius puzzle

Data taking planned during run 3
Interception of small BDF beam fraction to look for $\tau \rightarrow 3\mu$ decays

Could set limits on branching ratio better than 10^{-10} level targeted by BELLE-II

Implementation layout under study

A small experimental hall upstream of BDF target could trigger a unique rare decay facility
Neutron EDM is leading the field for hadrons
Catching up in precision is a challenge for the proton
Well controlled ν beam from a μ storage ring

Precise $\sigma(\nu)$ measurements and a path towards a ν factory or a μ collider.

Possible siting@CERN studied within PBC
Main issues:

- 2 GeV continuous proton beam (PS best option but non-nominal for REDTOP)
- Demanding detector technology (Optical TPC and dual readout calorimetry)

Also in discussion at FNAL

REDTOP η – η’ factory