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Cosmological magnetic fields
Observed with a number of techniques

In the Galaxy (~kpc), solid evidence of B ≅ µG.

At cosmological scales (~1 Mpc), blazars: B ≅ 10-17 G 

[x(L/1 Mpc)1/2 for L<1 Mpc]


[From dynamo amplification 
of primordial 10-21÷ -23 G @ Mpc scale]
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Fig. 6 Constraints on the cosmologically produced IGMF from CMB anisotropy measure-
ments.

magnetic field enter. On very large, super horizon scales, these are, however,
compensated by initial fluid under densities and neutrino magnetic stresses, at
least if the magnetic fields are generated causally. See Shaw and Lewis (2010);
Bonvin and Caprini (2010); Adamek et al (2011). If the magnetic field is gen-
erated during inflation, the compensation mechanism after neutrino decoupling
is still active, but an additional ’passive mode’ due to the matching condition
at the end of inflation is introduced (Bonvin et al 2012). The relation of its
amplitude to the late time magnetic field strength depends on the details of
reheating.

The non-observation of the large angular scale anisotropies of the CMB
have led to an upper limit B ≤ 4 × 10−9 G for the fields with correlation

scale of the order of the CMB scale, λB
>∼ 10h−1Mpc (Barrow et al 1997).

Limits depending on the power law of the magnetic field spectrum have been
derived in Refs. (Durrer et al 2000; Giovannini 2009; Paoletti and Finelli 2011;
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Inflationary magnetogenesis
Pro: possible to create large coherence lengths

Con: must modify standard model

SMaxwell =

Z
d4x

p
g

✓
�1

4
Fµ⌫ F

µ⌫

◆
=

Z
d4x

✓
1

2
A0

i A
0
i �

1

2
@aAi @aAi

◆

where
A0 = 0, @i Ai = 0

conformally flat Universe

Coulomb gauge (assumed throughout)

⇒Maxwell on conformally flat space-time = free theory on Minkowski

⇒no effects from inflation

gµ⌫ = a2(⌧)
�
�d⌧2 + dx2

�



Inflationary magnetogenesis
One idea: light charged scalar φ 

with mass m<H 
gets fluctuations during inflation

Electric currents

Magnetic field
…but unfortunately…

Turner, Widrow 87
Calzetta, Kandus Mazzitelli 97



Inflationary magnetogenesis
…but unfortunately…

Very red spectrum of magnetic field
(currents are slow at large scale)

<latexit sha1_base64="zUbJIsy6H1wWGP8xG/HhB9NBBPQ="></latexit>

B / H
5/2

m3/2 MP

1

`2

(e.g., B=10-45 G @ 1 Mpc 
for H=1012 GeV, m=100 GeV)

Giovannini, 
Shaposhnikov 00

☹



Inflationary magnetogenesis
Actually, there is a standard mechanism 

of amplification:

Metric perturbations during inflation break 
conformal invariance!

Maroto 00

…but perturbations freeze at super-
Hubble scales

Blue spectrum again, 
and very weak fields ☹



Inflationary magnetogenesis

Let us try to modify the gauge-invariant

Lagrangian for electromagnetism, then!



Axion:
Turner Widrow 87, 

also Carroll Field Garretson  92
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Ratra magnetogenesis

f(φ) through φ(τ) gives f(τ) modeled as 

f(⌧) = (�H ⌧)�n

will assume inflation with H constant
and a=1 at end of inflation
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amplification 
at large scales

n<0 to avoid strong coupling (charge of electron ~f -1)
Demozzi et al 09



Ratra magnetogenesis
At end of inflation B(`) ' H

2
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(scale invariant for n=-3)

n=-3, H~1012 GeV ⇒ B~10-12 G at all scales Goo
d!

…however…
electric field:
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(IR-divergent for n=-3!)

Backreaction from electric energy avoided for n>-2
⇒ B<10-32 G at 1 Mpc 😒 Demozzi et al 09



Ratra magnetogenesis:
ways out?

Ferreira, Jain, Sloth 13, 14

Assume:

 Ratra active only after 1 Mpc scales leave the horizon

  n=-2+…
  Low scale inflation ρ1/4~10 MeV

B~10-15 G @ 1 Mpc

Difficult…



Axion magnetogenesis
SAxion =

Z
d4x

p
g

✓
�1

4
Fµ⌫ F

µ⌫ +
�

4 f
Fµ⌫ F̃

µ⌫

◆

=
�̇

2 f
✏ijk Ai @j Ak

by parts

sign depends on momentum: 
not defined!

Convenient to decompose 
photon in helicity modes

A(x, ⌧) =
X

�=±

Z
d3k

(2⇡)3/2
⇥
a�k A

k
� (⌧) e

�(k) eikx + a�k
† A⇤k

� (⌧) e� ⇤(k) e�ikx
⇤



Axion magnetogenesis
Equation for mode functions:
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Axion magnetogenesis
Magnetic spectrum at end of inflation
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😊  overall amplitude tunable
😞  very blue spectrum

If ξ chosen to saturate no backreaction condition
(B2<H2 MP2) then B too small @ Mpc scales

 Carroll Field Garretson  92

…however…



Evolving the field in the cosmic plasma
The magnetic field produced has maximal helicity

≅ 0

generated by 
parity-violating 

background
( )

and helicity is (almost) conserved for large conductivities

____________________________________________
Dissipative processes suppress power at small scales

In order to conserve helicity, 
power has to go to larger scales: 

Inverse cascade

Son 99 
Field and Carroll 00

Vachaspati 01,
Sigl 02…



From Jedamzik and Banerjee 2004

Numerical solutions

Evolution of the comoving magnetic field:

without helicity with helicity



Scalings:

☛ Coherence length ∝ τ2/3

☛ Magnetic field strength ∝ τ-1/3

☛ Spectral index for scales>coherence length: 
constant 

(property of self-similarity)

therefore that the system satisfies the same causality relation as if it was in a turbulent regime:
the details of the time evolution do not matter much.

The relation vA ' LHrec links the values of B and L at recombination. Further evolving
until today under the condition that their comoving values stay constant, one finds that the
following relation holds [14, 42]:

B0 ' 10�8G
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As stated in references [14, 42], this relation is very general and works for a large set of
initial conditions. It can also be obtained by imposing that the system is turbulent in the
late Universe (which is certainly a reasonable assumption after reionisation), and applying
eq. (4.5) with v = vA today: this reads B0/

q
⇢0b ' H0 L0, with ⇢0b the baryon density. The

difference among the values of B0 found by evolving (4.5) evaluated at recombination until
today, as opposed to assuming its validity today, is of the order (we set ⇢cdm ' ⇢rec/2 at
recombination) of (

p
⌦b/2)/⌦cdm: this can be considered of order one within the level of

precision with which eq. (4.5) holds.
In order to determine the values of B0 and L0 we need to supplement eq. (4.6) with

a second relation. Since our magnetic field is maximally helical, such a relation is provided
by the conservation of (comoving) helicity, applying during the regimes of high conductivity
(i.e., always during the expansion of the Universe). Helicity is defined as the volume integral
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Z
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so that, factoring in the expansion of the Universe, conservation of helicity implies
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Combining eqs. (4.6) and (4.8) we determine the current values of the magnetic field and the
correlation scale. Note that the spectral index of the magnetic field is given by eq. (2.7):
therefore, at scales ` > L, the intensity of the magnetic field is

B(`) = B
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. (4.9)

We can then insert the obtained values of the magnetic field and the correlation scale into
eq. (4.9) to get the predicted value of the magnetic field at a given scale `.

5 Observational constraints

We consider two classes of observations that can lead to constraints on primordial magnetic
fields:

1. magnetic fields in Galaxies, of the order of 10�6 G, are observed with a number of tech-
niques. They are typically assumed to be the end product of the mean-field dynamo
mechanism, able to amplify a weak seed field by several orders of magnitude (for a re-
view, see [18]). There are large uncertainties on the amplitude of the seed field required

– 9 –



In practice the story is more complicated…
19

FIG. 12: The evolution of comoving coherence length for initial magnetic field configurations with different spectral indices n
and inital magnetic helicities. Solid lines from top to bottom: (a) hg = 1, rg = 0.01, (b) hg = 10−3, n = 3, rg = 0.01, (c)
hg = 0, n = 3, rg = 0.01, (d) hg = 0, n = 3, rg = 10−5. The labels lν , lγ , lH refer to the comoving mean free paths of neutrinos
and photons and the comoving Hubble length, respectively. The epoch of magnetogenesis was assumed to occur during the
electroweak phase transition (Tg = 100 GeV).

FIG. 13: The evolution of the relative magnetic energy density r corresponding to the models shown in Fig. 12. Solid lines
from top to bottom: (a) hg = 1, rg = 0.01, (b) hg = 10−3, n = 3, rg = 0.01, (c) hg = 0, n = 3, rg = 0.01, (d) hg = 0, n = 3,
rg = 10−5. The epoch of magnetogenesis was assumed to occur during the electroweak phase transition (Tg = 100 GeV).
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From Jedamzik and Banerjee 2004
evolution of maximally helical field
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…but the final result is simple:



Inverse cascades during the radiation dominated era

Lorenzo Sorbo

Department of Physics, University of Massachusetts, Amherst, MA 01003, USA
(Dated: May 22, 2014)

Review of inverse cascade from reheating to recombination

Everything in physical units. Subscript c for comoving

quantities. Neglect T -dependence of g⇤ for the time being

at least...

Let B0 be the initial magnetic field and L0 the initial

physical coherence length.

Set a = 1 at T = TRH . Then by solution of Friedmann
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B. Subsequent evolution

Assuming as above that Rhe > 1 and `he < Lhe we
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where the second term in brackets dominates quite

rapidly over the first one, so that the comoving mag-

netic field starts increasing. Then from conservation of

comoving helicity we also obtain
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Now since both the comoving coherence length and the

Reynolds number keep increasing, inverse cascade lasts

until the EW phase transition at T = T100 = 100 GeV.
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Now since both the comoving coherence length and the

Reynolds number keep increasing, inverse cascade lasts

until the EW phase transition at T = T100 = 100 GeV.

(assuming instantaneous reheating)

Coherence length grows:

Magnetic field decreases: rec

rec rec
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with Trec=0.3 eV, temperature at recombination
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…but unfortunately…
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where the second term in brackets dominates quite

rapidly over the first one, so that the comoving mag-

netic field starts increasing. Then from conservation of
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Now since both the comoving coherence length and the

Reynolds number keep increasing, inverse cascade lasts

until the EW phase transition at T = T100 = 100 GeV.
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Everything in physical units. Subscript c for comoving

quantities. Neglect T -dependence of g⇤ for the time being

at least...
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Now since both the comoving coherence length and the

Reynolds number keep increasing, inverse cascade lasts

until the EW phase transition at T = T100 = 100 GeV.

(assuming instantaneous reheating)

Coherence length grows:

Magnetic field decreases: rec

rec rec

rec

with Trec=0.3 eV, temperature at recombination

(physical)

Anber, LS 2006

Can obtain 10-17 G @ 1 Mpc with 

ξ~16 ⇒ scale of inflation ρ1/4~1010 GeV



Constraints from nongaussianities
The produced electromagnetic modes 

infect the inflaton perturbations through the coupling φFF, 
contributing to its three-point function

NONGAUSSIANITIES

where COBE normalization imposes the condition P⌅
� = Pobs

� = 2.5 ⇥ 10�9.
The strongest constraint on the system comes from the requirement that nongaussianities

are within the limits set by observations. Nongaussianities in this setting have also been studied
by [? ], who have found that the bispectrum has maximal amplitude in the case of equilateral
configurations, where

f equil
NL ⇧ 8.9 ⇥ 104

H6

⇥3M6
P

e6⇤ ⇥

⌅9
. (4.2)

From the current WMAP limit [? ] f equil
NL < 266 we derive the bound ⌅ < 2.6. For such small values

of ⌅, and for H <⇤ 10�4MP , the quantity �⌃ is tiny and unobservable. We thus conclude that
the simplest version of this scenario is unable to yield detectable parity violation while respecting
the constraints from nongaussianities. Let us now discuss two modifications of this scenario where
parity violation can be detected while complying with the other observations.

4.1 A curvaton

A first possibility is to assume that most of the density perturbations is provided by a second scalar
field, a curvaton [? ], that obeys an essentially gaussian statistics. In this case, equation (??) gives
only the contribution of the inflaton ⇧ to the observed power spectrum, that we require to be
smaller than the observed value Pobs

� = 2.5 ⇥ 10�9.
In order to get a feel of the behavior of the system in this case, let us first consider the regime

of large ⌅, where the first term in brackets in eqs. (??) and (??) is negligible with respect to the
second term, that has an exponential dependence on ⌅.

Let us then denote by � < 1 the fraction of contribution from eq. (??) to the observed Pobs
� ,

so that P⌅
� = 2.5 � ⇥ 10�9. It is easy to see that in this case f equil

NL ⇧ 8400 �3/2, implying that
� ⇧ 0.1 is already su⇥cient to make fNL compatible with observations for all values of ⌅. As a
consequence of the presence of a curvaton, also the tensor-to-scalar ratio is reduced by a factor of
�. Since we are considering the limit ⌅ ⌅ 1, the tensor modes are fully chiral (�⌃ ⇧ 1), and the
tensor-to-scalar ratio r =

�
Pt,L + Pt,R

⇥
)/Pobs

� evaluates to r ⇧ 7.2⇥�⇥⇥2, where ⇥ = M2
P V,2⌅ /2V

2

is the slow-roll parameter during inflation and is unrelated to the parameters in the curvaton sector.
For a fully chiral spectrum of gravitational waves, r as small as ⇤ 0.009 might lead to a detectable
parity violation, at 95% confidence level, in a cosmic-variance-limited CMB experiment [? ]. This
corresponds, for � = 0.1 to requiring ⇥ >⇤ 1/9. While this would be a rather large value of the
slow-roll parameter in the usual models of inflation, it is worth recalling that in curvaton models
the only requirement is that ⇥ <⇤ 1 for inflation to occur. In fact, the constraint on the spectral
index n = 0.963 ± 0.012 [? ] can be always satisfied by n � 1 = �2 ⇥ + 2 ⇤C , where ⇤C , that is
related to the second derivative of the curvaton potential [? ], can be tuned to compensate for the
contribution to n� 1 by ⇥.

In order to clarify the behavior of the system for all values of ⌅, we plot in figure 1 the
parameter space of the model for the choice � = 0.1. The region below the thicker line leads to a
violation of parity too small to be detected. The region above the thinner line corresponds to a
value of r larger than 0.24, excluded by [? ]. Figure 1 shows that for ⌅ >⇤ 3 there is a region in
parameter space consistent with the current data that would lead to a detection of parity violation
in the CMB in the future surveys.

4.2 Many gauge fields

It is also possible to reduce the level of nongaussianities by considering a system with several gauge
fields. Let us denote by N the number of U(1) gauge fields coupled to the inflaton, all with the same
coupling 1/f , in the Lagrangian (??). Eqs. (??), (??) and (??) are then modified by multiplying

– 6 –

Planck constrains |fNLequil|<50

ξ<2.2 Axion model 
ruled out

Barnaby Peloso 10
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How to find a way out?

Problems Ways out

Use a hybrid of the two models
Ratra does not control amplitude

Axion does not control spectral index

Too much fNL
φ is not the inflaton,

use instead a rolling spectator σ



The Lagrangian

L = f(⌧)2
✓
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Fµ⌫ F

µ⌫ +
�

8
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Ã00
� +
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k

⌧
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Ã� = 0

equation of motion:

f(τ) from f(σ) through σ(τ) 
modeled as f(⌧) = (�H ⌧)�n γ≡-ξ/n an O(10) constant

n<0 to avoid strong coupling

helicity dependent,
dominates at intermediate times,

exponential amplification

helicity independent,
dominates at late times,

determines spectral index

Canonically 
normalized

field



A model
Supergravity Lagrangian for U(1) gauge field

5

n and H14. Trading, finally, the Hubble parameter for

the energy scale of inflation ⇢1/4 ⌘

pp
3HMP we ob-

tain the plot of figure 1. The top line corresponds to the
optimistic case of an inverse cascade that lasts until re-
combination, whereas the bottom line assumes that the
inverse cascade ends at neutrino decoupling, T ' 1 MeV.

As we see, in the optimistic case, a magnetic field of
⇠ 10�17 G at ⇠ 1 Mpc requires an energy density during
inflation of the order of (109 GeV)4, well below the GUT
scale. This implies that the contribution to the primor-
dial gravitational waves by the quantum amplification of
the vacuum fluctuations of the graviton is negligible with
respect to the contribution (15) induced by the quanta
of the gauge modes. The case of pure axion magnetoge-
nesis corresponds to n = �1, as one can see from eq. (5).
Even this case can lead to su�ciently strong magnetic
fields for an inflationary scale of ⇠ 108 GeV.

In the more pessimistic case, considered in ... and in...,
that the inverse cascade ends at ⇠ 1 MeV, the magnetic
fields obtained are significantly weaker, and one has to in-
voke a much smaller Hubble parameter during inflation
to obtain fields of 10�17 G at 1 Mpc. Figure 1 shows
that in this case required the energy density during in-
flation ranges from ⇠ 107 GeV for n close to �2 to less
than 100 GeV in the case in which only the axion is
rolling, n = �1. While the latter value is below the typi-
cal “minimal” requirement of an inflationary scale larger
than O(TeV) to accommodate baryogenesis and reheat-
ing before nucleosynthesis, we see that one can obtain
successful magnetogenesis at reasonably large energies if
we require n < �1.5 or so.

V. A SIMPLE SUGRA MODEL

In this section we briefly describe a model derived from
the N = 1, four-dimensional supergravity lagrangian
that leads to the e↵ective lagrangian (1). We start from
the general kinetic term for a gauge field in supergrav-
ity (see e.g. [15])

L = �
1

4
Re {f} Fµ⌫ F

µ⌫
�

1

4
Im {f} Fµ⌫ F̃

µ⌫ (23)

where the gauge kinetic function f is a holomorphic func-
tion of the superfields in the theory. We then assume that
f is given by the product of two fields f(X, Y ) = X Y
and we require that both the real and the imaginary part
of Y as well as the imaginary part of X are stabilized to

Re{Y } = Y0 , Im{Y } = � Y0 , Im{X} = 0 , (24)

so that the lagrangian for the gauge field reads, defining
XR ⌘ Re{X},

L = XR Y0
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that, identifying I2 ⌘ XR Y0, reproduces our la-
grangian (1).

VI. CONCLUSIONS AND DISCUSSION
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and we use the approximate expression
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where we defined ⇠ ⌘ �n� > 0, and with the following
expansions [28], valid for |k⌧ | ⌧ |n �| we use
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Next we use the approximate expression valid for ⇠ � 1
with finite n
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Next we need to compute the time derivative of A+.
To to this we use the property
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(30)
that implies that, after rescaling the integration variable
q by k and after setting ⌧ = 0 since in any case we expect
a scale invariant spectrum, the graviton correlatir can be
written as
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Now we note that since 8⇠ � 1, then if x >
⇠ 1 at least

on between
p
8 ⇠ q x and

q
8 ⇠ |k̂� q|x is certainly much

larger than unity. Given that the Bessel function gets ex-
ponentially small when its argument is much larger than
unity, this implies that x > 1 gives negligible contribu-
tion to the integral. Therefore we can set x ⌧ 1 and
replace (sinx � x cosx) by x3/3. Then we can rescale

f=gauge kinetic function, assume
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that, identifying I2 ⌘ XR Y0, reproduces our la-
grangian (1).
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and we use the approximate expression
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where we defined ⇠ ⌘ �n� > 0, and with the following
expansions [28], valid for |k⌧ | ⌧ |n �| we use
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Next we use the approximate expression valid for ⇠ � 1
with finite n
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that implies that, after rescaling the integration variable
q by k and after setting ⌧ = 0 since in any case we expect
a scale invariant spectrum, the graviton correlatir can be
written as
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Now we note that since 8⇠ � 1, then if x >
⇠ 1 at least

on between
p
8 ⇠ q x and

q
8 ⇠ |k̂� q|x is certainly much

larger than unity. Given that the Bessel function gets ex-
ponentially small when its argument is much larger than
unity, this implies that x > 1 gives negligible contribu-
tion to the integral. Therefore we can set x ⌧ 1 and
replace (sinx � x cosx) by x3/3. Then we can rescale

then:

5

n and H14. Trading, finally, the Hubble parameter for

the energy scale of inflation ⇢1/4 ⌘

pp
3HMP we ob-

tain the plot of figure 1. The top line corresponds to the
optimistic case of an inverse cascade that lasts until re-
combination, whereas the bottom line assumes that the
inverse cascade ends at neutrino decoupling, T ' 1 MeV.

As we see, in the optimistic case, a magnetic field of
⇠ 10�17 G at ⇠ 1 Mpc requires an energy density during
inflation of the order of (109 GeV)4, well below the GUT
scale. This implies that the contribution to the primor-
dial gravitational waves by the quantum amplification of
the vacuum fluctuations of the graviton is negligible with
respect to the contribution (15) induced by the quanta
of the gauge modes. The case of pure axion magnetoge-
nesis corresponds to n = �1, as one can see from eq. (5).
Even this case can lead to su�ciently strong magnetic
fields for an inflationary scale of ⇠ 108 GeV.

In the more pessimistic case, considered in ... and in...,
that the inverse cascade ends at ⇠ 1 MeV, the magnetic
fields obtained are significantly weaker, and one has to in-
voke a much smaller Hubble parameter during inflation
to obtain fields of 10�17 G at 1 Mpc. Figure 1 shows
that in this case required the energy density during in-
flation ranges from ⇠ 107 GeV for n close to �2 to less
than 100 GeV in the case in which only the axion is
rolling, n = �1. While the latter value is below the typi-
cal “minimal” requirement of an inflationary scale larger
than O(TeV) to accommodate baryogenesis and reheat-
ing before nucleosynthesis, we see that one can obtain
successful magnetogenesis at reasonably large energies if
we require n < �1.5 or so.

V. A SIMPLE SUGRA MODEL

In this section we briefly describe a model derived from
the N = 1, four-dimensional supergravity lagrangian
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Mode functions
Ã+(k, ⌧) =

1p
2 k

(G�n�1(⇠, �k ⌧) + i F�n�1(⇠, �k ⌧))

Coulomb wave functions

At large scales

Exponential 
amplification

Arbitrary 
spectral index

A-~0
~

the term proportional to ⇠ dominates, the overall sign of the coefficient of Ã� in eq. (2.3)
is determined by the sign of � ⇠: the mode functions for which � ⇠ > 0 are exponentially
amplified (remember ⌧ < 0), whereas the photons of opposite helicity do not feel such an
amplification. At this stage a net chirality in the photon system is generated. Finally, as
⌧ ! 0, mode functions of both helicities are amplified by the term �n (n+ 1) /⌧2, and the
spectral index at large scales is controlled by the parameter n. The final result of this process
is a field with an arbitrary spectral index and with net helicity.

Since modes for which � ⇠ < 0 are less amplified we will neglect their effect altogether,
assuming � = +1 in what follows. The explicit solution of eq. (2.3) that goes to positive-
frequency only modes at ⌧ ! �1 is a linear combination of the Coulomb wave functions:

Ã�(k, ⌧) =
1p
2 k

(G�n�1(⇠,�k ⌧) + i F�n�1(⇠,�k ⌧)) . (2.4)

For |k ⌧ | ⌧ ⇠, i.e., for the phenomenologically interesting scales corresponding to modes
that are out of the Bunch-Davies vacuum, the contribution of F�n�1(⇠, �k ⌧) to Ã�(k, ⌧) is
negligible. Moreover, using the result of [17], we can approximate in the same regime
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r
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In particular, for |k ⌧ | ⌧ 1/⇠ we obtain
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that shows that the overall amplitude of the magnetic field is exponentially large in ⇠.
Defining the magnetic field power spectrum as k3hBi(k)B⇤

i (q)i = 2(2⇡)3PB(k)�(k� q),
with Bi(k) = kAi(k), eq. (2.6) also shows that the spectral index of the magnetic fieldp

PB(k) / knB at large scales is

nB =
5

2
�
����n+

1

2

���� . (2.7)

We have used this definition of the spectral index since it corresponds to the scaling with k of
the magnetic field intensity on a given scale ` = 2⇡/k, c.f. also eq. (4.9). We have therefore
that n = �3 corresponds to a scale invariant magnetic field. This would however imply a red
electric field, whose energy would quickly dominate the system invalidating our analysis [9].
The case n = �2 corresponds to a flat electric spectrum, still leading to a logarithmic infrared
divergence, that in its turn would lead, among other effects, to a breaking of the SO(3)
invariance of our inflating patch [36], and to anisotropic expansion [37]. For this reason we
will focus on the regime n > �2 where all relevant quantities are infrared-finite. We remind
also that n  0 to avoid strong coupling [10].

Before studying the intensity of the magnetic field at cosmological scales, however, let us
focus on the effects of the presence of the gauge field during inflation and on the corresponding
constraints on the space of parameters of the model.

3 Electromagnetic fields, low scale inflation and the Lyth bound

Typically, an upper bound on the intensity of the magnetic field during inflation is imposed by
requiring that the metric perturbations induced by the gauge field do not affect the properties
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Subsequent evolution:

Assume instantaneous reheating
Assume inverse cascade until recombination

therefore that the system satisfies the same causality relation as if it was in a turbulent regime:
the details of the time evolution do not matter much.

The relation vA ' LHrec links the values of B and L at recombination. Further evolving
until today under the condition that their comoving values stay constant, one finds that the
following relation holds [14, 42]:

B0 ' 10�8G

✓
L0

Mpc

◆
. (4.6)

As stated in references [14, 42], this relation is very general and works for a large set of
initial conditions. It can also be obtained by imposing that the system is turbulent in the
late Universe (which is certainly a reasonable assumption after reionisation), and applying
eq. (4.5) with v = vA today: this reads B0/

q
⇢0b ' H0 L0, with ⇢0b the baryon density. The

difference among the values of B0 found by evolving (4.5) evaluated at recombination until
today, as opposed to assuming its validity today, is of the order (we set ⇢cdm ' ⇢rec/2 at
recombination) of (

p
⌦b/2)/⌦cdm: this can be considered of order one within the level of

precision with which eq. (4.5) holds.
In order to determine the values of B0 and L0 we need to supplement eq. (4.6) with

a second relation. Since our magnetic field is maximally helical, such a relation is provided
by the conservation of (comoving) helicity, applying during the regimes of high conductivity
(i.e., always during the expansion of the Universe). Helicity is defined as the volume integral

H =

Z
d3xA ·B / B2 L , (4.7)

so that, factoring in the expansion of the Universe, conservation of helicity implies

B2
0 L0 = B2

rh Lrh

✓
arh
a0

◆3

. (4.8)

Combining eqs. (4.6) and (4.8) we determine the current values of the magnetic field and the
correlation scale. Note that the spectral index of the magnetic field is given by eq. (2.7):
therefore, at scales ` > L, the intensity of the magnetic field is

B(`) = B

✓
L

`

◆(5�|2n+1|)/2
. (4.9)

We can then insert the obtained values of the magnetic field and the correlation scale into
eq. (4.9) to get the predicted value of the magnetic field at a given scale `.

5 Observational constraints

We consider two classes of observations that can lead to constraints on primordial magnetic
fields:

1. magnetic fields in Galaxies, of the order of 10�6 G, are observed with a number of tech-
niques. They are typically assumed to be the end product of the mean-field dynamo
mechanism, able to amplify a weak seed field by several orders of magnitude (for a re-
view, see [18]). There are large uncertainties on the amplitude of the seed field required
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As we will see, the generation of a sufficiently strong magnetic field requires a Hubble
parameter several orders of magnitude below the one required by a tensor-to-scalar ratio
r = 0.2 if the tensor modes are the result of amplification of vacuum fluctuations by the de
Sitter geometry. Therefore the contribution to Pt from tensors produced by the standard
mechanism – that is, those associated to the solution of the homogeneous component of
eq. (3.1) – is largely subdominant with respect to that given by eq. (3.6). Since in this
system one can obtain low scale inflation while obtaining a large value of r, it provides a
counterexample to the Lyth bound, along the lines of [21, 26–28] (see also [41] for related
ideas).

4 Inverse cascade and the current intensity of the magnetic field

In order to evaluate the amplitude and the correlation scale of the magnetic field today,
here we study its time evolution after the end of inflation. For simplicity, we will assume
instantaneous reheating. Several numerical and analytical studies [13, 14] show that helical
magnetic fields undergo a process of inverse cascade during the radiation dominated epoch.
During this process, the comoving correlation scale of the magnetic field increases and its
comoving intensity decreases, and power is transferred from small to large scales while the
magnetic spectrum at scales larger than the correlation scale maintains its spectral index
unchanged, displaying a property of self-similarity.

In agreement with [42], we define the correlation scale as

L =

R
d3k 2⇡

k |B(k)|2
R
d3k |B(k)|2

(4.1)

where, for the helical fields under consideration, B(k) ⌘ k A+(k), with A+(k) given by the
approximate expression (2.5). In particular, at the end of inflation

Lrh =
18⇡

(3� 2n) (5 + 2n)

⇠

H
. (4.2)

We also define the intensity B of the magnetic field as

B2 ⌘ hB2i =
Z

d3k

(2⇡)3
|k A+|2 , (4.3)

so that, at the end of inflation

B2
rh = H4 e

2⇡ ⇠

⇠5
�(4� 2n)�(6 + 2n)

28 ⇥ 32 ⇥ 5⇥ 7⇥ ⇡3
. (4.4)

Starting from these initial conditions we can compute the present values B0 and L0 of
the magnetic field and of its correlation length. The analysis of reference [14] (see also [42]
for a compendium) shows that the evolution of B and L during the post-inflationary era goes
through several alternating turbulent, viscous, and free-streaming phases. The occurrences
of these phases depend on the values of Brh and Lrh and on the evolution with temperature
of the kinetic viscosity of the plasma (which is determined by the particle species with the
longest mean free path: neutrinos, followed by photons after neutrino decoupling).

For a large set of initial conditions the system starts in a turbulent phase, and the
inverse cascade can take place: the comoving value of B decreases and that of L increases.
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Constraints on parameter space

n<0 to avoid strong coupling
n>-2 to avoid IR divergence of electric field

will focus on -2<n<0

First constraint: overproduction of GWs
by magnetic field during inflation?



Primordial gravitational waves

Tensor components of the metric

gµ�(x, t) dx
µ dx� = �dt2 + a2(t) (�ij + hij(x, t)) dx

i dxj

X

ij

�ij hij =
X

i

⇥i hij = 0

the tensor mode has two components (=helicity ±2) 
so we can decompose it, in momentum space, 

into left handed and right handed modes

hij(k, t) = hL(k, t) �
L
ij(k) + hR(k, t) �

R
ij(k)
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ȧ
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� TEM
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Projector on helicity-λ
components

(note: this is an operator equation)

RHS is known, so obtain hλ with retarded propagator

The energy of the electromagnetic field sources 
gravitational waves:

≡Tλ

Spatial components 
of gauge field 

stress-energy tensor

Generation of (parity violating)�
gravitational waves by U(1) gauge field during inflation�



The amplitude of the helicity-λ�
gravitational waves�

If Gk(t,t’) is retarded propagator 
for operator d2/dt2+3 H d/dt+k2/a2, then

h�(k, t) =
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Z
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and from this we obtain the amplitude 
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where is quartic in the gauge field A
and can be computed in terms of the functions Aλ k (t)
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Figure 1. The function pt(n) appearing in equation (3.6) that determines the amplitude of the tensor
spectrum induced by the magnetic field.

To compute the expression (3.4) we use the approximate form (2.5) of the mode functions
Ã+ ⌘ I A+. We also approximate Gk(0, ⌧ 0) ' ⌧ 0/3, since, due to the exponential suppression
of A+(k, ⌧ 0) for |k ⌧ | � ⇠�1, we can assume |k ⌧ 0| ⌧ 1. Finally, we consider only the
contribution with � = +1, as negative helicity gravitons are produced much less abundantly.
The integral in d⌧ 0 can then be performed analytically, whereas the integral in d3q has to
be computed numerically. We thus obtain the following scale invariant power spectrum for
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where the function pt(n) is plotted in figure 1 for �1.95  n  0.
We note that the function pt(n) diverges as n ! �2, as for n = �2 the energy of

the electric field is logarithmically divergent in the infrared. For this reason our analysis is
limited to n > �2. In analogy to what was done in [9–11], it would be possible to extend our
analysis also to the regime n < �2 at the cost of introducing a new parameter in the model
corresponding to an infrared cutoff for the gauge field (which is in one-to-one correspondence
with the time of the beginning of magnetogenesis during inflation). While we will not pursue
this option here, it would be interesting to see how the constraints that we will find for the
model (1.1) would be relaxed by such an assumption.

Expressing the amplitude of the tensors generated by the gauge field during inflation in
terms of the tensor-to-scalar ratio r we obtain the relation
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rP⇣
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, (3.7)

where P⇣ ' 2.5⇥ 10�9 is the amplitude of the scalar perturbations.
In the present paper, to fix ideas, we will assume that the B-modes observed by BICEP2

are entirely of primordial origin and we will therefore set r = 0.2. This will allow to reduce
the number of free parameters of the model from 3 (n, ⇠, H) to 2. If the constraint r = 0.2
is relaxed to an upper bound, then eq. (3.7) will turn into an upper bound for H once n and
⇠ are fixed (c.f. the dashed line in Fig. 3).
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Isocurvature perturbations are partially converted
into curvature perturbations during inflation

σ⟹Aμ⟹δσ⟹δφ

Nongaussian component in curvature perturbations,
strongly constrained by Planck!
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scale of inflation to be lower. However, as we will see, constraints from the curva-
ture power spectrum and from the bounds on nongaussianities, in combination with
successful magnetogenesis, still allow inflation to happen at reasonable energy scales.

3.2.1 Equation of motion of the inflaton perturbations
We perturb the inflaton and the auxiliary field as usual, Ï = Ï0 + ”Ï and ‡ = ‡0 + ”‡,
where ”Ï and ”‡ are first order quantities while Aµ is half order one. Here we identify
the equation of motion of ”Ï which is then required in order to evaluate the curvature
perturbations.

We work in the flat gauge and follow the conventions of [51]. From the La-
grangian (1) we use Einstein equations to trade the metric perturbations for the matter
perturbations [31] and we obtain the equation for ”Ï by subtracting from the exact
equation for Ï the equation for the zero mode Ï0, where the perturbation in the gauge
field is evaluated in Hartree approximation. Using this procedure, the equation of
motion of ”Ï in momentum space reads
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where VÏÏ indicates the second derivative of the potential with respect to Ï, and H
is the comoving Hubble rate. The source terms depend on the gauge field and can be
written in terms of the electromagnetic energy density and Poynting vector as follows
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where the convolution is defined as
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(2fi)3/2 El(k ≠ q)Bm(q) . (14)

Note that a term involving ”‡flat is present in the equation of motion of ”Ïflat. This
term and the sources of the r.h.s of eq. (11) come from the metric perturbations.
Without accounting for these terms, one would find that ”Ïflat satisfies the Klein-
Gordon equation, since the inflaton Ï is only minimally coupled to the other fields.
Analogously, the equation of motion for ”‡flat reads
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A second constraint!

As mentioned above, in the following we are going to consider only the result of
the equilateral configuration, and compare it with current upper limits on curvature
non-gaussianities in terms of f

equil
NL .

6 Constraints on the magnetic field production
from curvature perturbations
In the previous sections we obtained the curvature power spectrum and bispectrum
as a function of the parameters of the model. We now compare them to the results
provided by observations, in order to constrain the parameter space. We also require
that the lower bound on magnetic fields in the intergalactic medium is satisfied, see
e.g. [2–4]. We find that the combination of these requirements can be satisfied: our
model can explain the presence of intergalactic magnetic fields and satisfy, at the same
time, the constraints imposed by the curvature bispectrum.

Observations provide strict constraints on the curvature non-gaussianities. In par-
ticular, for the equilateral configuration, [54] finds the following bound: f

equil
NL =

≠16 ± 70 from temperature data, f
equil
NL = ≠3.7 ± 43 for T + E data, at 68% of CL [54].

As usual, we parametrize the bispectrum by f
equil
NL , defined as
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where PR is the total curvature power spectrum. From the expression of the bispectrum
(77), using the relation (61), we have

f
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6
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where we used Ï̇0 =


2‘Ï Mpl H, and where f(n), which is defined in eq. (78) above,
is well approximated by f(n) ƒ 1.7 ◊ 10≠5 (2 + n)4.8.

We impose f
equil
NL in (81) to be equal or smaller than the current upper bound.

At the same time, we impose su�cient magnetogenesis to satisfy the lower bound on
magnetic fields in the intergalactic medium.

6.1 Constraints on inflationary parameters
In [1] it was found that the magnetic field produced in this model is given, at the end
of inflation, by

Breh = H
2 e

fi›

›5/2 bn e
≠2 �N

, where bn ©

Û
� (4 ≠ 2n) � (6 + 2n)

80640 fi3 , (82)

and where we have introduced a factor e
≠2 �N to account for the dilution of the mag-

netic field during inflation after the field ‡ has stopped rolling. Since large values of
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⟹a limit from fNL on inflationary energy scale

(assume B=10-17 (1 Mpc/L)1/2 G)

Figure 2: Constraints on the inflationary energy density in the model. We have imposed that
the magnetic field amplitude today satisfies eq. (87) with B

NV = 10≠17 G. The top blue curve is
obtained by fixing f

equil
NL

= 50 and N‡ = Nobs, the curve in the middle has f
equil
NL

= 10, still with
N‡ = Nobs. Finally, the curve at the bottom has f

equil
NL

= 50 with N‡ = 200. In all the curves we
have assumed that �N = 0. The energy scale of inflation quickly decreases as we increase �N , as
it goes as e
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The strong dependence of flinf in �N implies that ‡ should become inert very close

to the end of inflation. Under this condition, the model provides a possible explana-
tion for the observed presence of magnetic fields in the intergalactic medium, while
respecting current observational constraints from scalar modes, and without requiring
inflation to happen at energy scales below the TeV or so.

Concerning tensor modes, the tensor-to-scalar ratio is given in Eq. (3.6) of [1]:

r = p
t (n) H
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where p
t (n) is plotted in Figure 1 of [1]. It is straightforward to see that r is pro-

portional to f
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N
≠2
‡ . In Fig. 3 we show the tensor to scalar ratio for fNL = 50,

N‡ = Nobs, for fNL = 10, N‡ = Nobs and for fNL = 50, N‡ = 200. In all cases the
tensor-to-scalar ratio in this model is too small to be detected both by future Earth-

6Note that our findings are consistent with those of [58], that has shown that the magnetic field produced
by the axial coupling is not strong enough to satisfy the blazar constraint if inflation happens at chaotic
inflation energy scales fl

1/4
inf ≥ 1016 GeV.

24

Figure 2: Constraints on the inflationary energy density in the model. We have imposed that
the magnetic field amplitude today satisfies eq. (87) with B

NV = 10≠17 G. The top blue curve is
obtained by fixing f

equil
NL

= 50 and N‡ = Nobs, the curve in the middle has f
equil
NL

= 10, still with
N‡ = Nobs. Finally, the curve at the bottom has f

equil
NL

= 50 with N‡ = 200. In all the curves we
have assumed that �N = 0. The energy scale of inflation quickly decreases as we increase �N , as
it goes as e

≠4 �N .

105 . fl
1/4
inf . 108 GeV as6

n varies from ≠2 to 0. This expression is valid for �N = 0,
and should be rescaled by ≥ e

≠4 �N for �N ”= 0. To see this, let us note that by
choosing a fixed value of fNL we are fixing the combination e

6fi›
H

6
/›

9. Using eq. (90),
once B

NV is fixed, this is equivalent to fixing the quantity H
3/2

e
12 �N

›
3. Neglecting

the (weak) dependence on the factor ›
3, this is equivalent to fixing fl

3/4
inf e

12 �N so that
fl

1/4
inf Ã e

≠4 �N .
The strong dependence of flinf in �N implies that ‡ should become inert very close

to the end of inflation. Under this condition, the model provides a possible explana-
tion for the observed presence of magnetic fields in the intergalactic medium, while
respecting current observational constraints from scalar modes, and without requiring
inflation to happen at energy scales below the TeV or so.

Concerning tensor modes, the tensor-to-scalar ratio is given in Eq. (3.6) of [1]:

r = p
t (n) H

4

M
4
pl

e
4fi›

›6 P≠1
R , (93)

where p
t (n) is plotted in Figure 1 of [1]. It is straightforward to see that r is pro-

portional to f
2/3
NL

N
≠2
‡ . In Fig. 3 we show the tensor to scalar ratio for fNL = 50,

N‡ = Nobs, for fNL = 10, N‡ = Nobs and for fNL = 50, N‡ = 200. In all cases the
tensor-to-scalar ratio in this model is too small to be detected both by future Earth-

6Note that our findings are consistent with those of [58], that has shown that the magnetic field produced
by the axial coupling is not strong enough to satisfy the blazar constraint if inflation happens at chaotic
inflation energy scales fl

1/4
inf ≥ 1016 GeV.

24

Figure 2: Constraints on the inflationary energy density in the model. We have imposed that
the magnetic field amplitude today satisfies eq. (87) with B

NV = 10≠17 G. The top blue curve is
obtained by fixing f

equil
NL

= 50 and N‡ = Nobs, the curve in the middle has f
equil
NL

= 10, still with
N‡ = Nobs. Finally, the curve at the bottom has f

equil
NL

= 50 with N‡ = 200. In all the curves we
have assumed that �N = 0. The energy scale of inflation quickly decreases as we increase �N , as
it goes as e

≠4 �N .

105 . fl
1/4
inf . 108 GeV as6

n varies from ≠2 to 0. This expression is valid for �N = 0,
and should be rescaled by ≥ e

≠4 �N for �N ”= 0. To see this, let us note that by
choosing a fixed value of fNL we are fixing the combination e

6fi›
H

6
/›

9. Using eq. (90),
once B

NV is fixed, this is equivalent to fixing the quantity H
3/2

e
12 �N

›
3. Neglecting

the (weak) dependence on the factor ›
3, this is equivalent to fixing fl

3/4
inf e

12 �N so that
fl

1/4
inf Ã e

≠4 �N .
The strong dependence of flinf in �N implies that ‡ should become inert very close

to the end of inflation. Under this condition, the model provides a possible explana-
tion for the observed presence of magnetic fields in the intergalactic medium, while
respecting current observational constraints from scalar modes, and without requiring
inflation to happen at energy scales below the TeV or so.

Concerning tensor modes, the tensor-to-scalar ratio is given in Eq. (3.6) of [1]:

r = p
t (n) H

4

M
4
pl

e
4fi›

›6 P≠1
R , (93)

where p
t (n) is plotted in Figure 1 of [1]. It is straightforward to see that r is pro-

portional to f
2/3
NL

N
≠2
‡ . In Fig. 3 we show the tensor to scalar ratio for fNL = 50,

N‡ = Nobs, for fNL = 10, N‡ = Nobs and for fNL = 50, N‡ = 200. In all cases the
tensor-to-scalar ratio in this model is too small to be detected both by future Earth-

6Note that our findings are consistent with those of [58], that has shown that the magnetic field produced
by the axial coupling is not strong enough to satisfy the blazar constraint if inflation happens at chaotic
inflation energy scales fl

1/4
inf ≥ 1016 GeV.

24

Figure 2: Constraints on the inflationary energy density in the model. We have imposed that
the magnetic field amplitude today satisfies eq. (87) with B

NV = 10≠17 G. The top blue curve is
obtained by fixing f

equil
NL

= 50 and N‡ = Nobs, the curve in the middle has f
equil
NL

= 10, still with
N‡ = Nobs. Finally, the curve at the bottom has f

equil
NL

= 50 with N‡ = 200. In all the curves we
have assumed that �N = 0. The energy scale of inflation quickly decreases as we increase �N , as
it goes as e

≠4 �N .

105 . fl
1/4
inf . 108 GeV as6

n varies from ≠2 to 0. This expression is valid for �N = 0,
and should be rescaled by ≥ e

≠4 �N for �N ”= 0. To see this, let us note that by
choosing a fixed value of fNL we are fixing the combination e

6fi›
H

6
/›

9. Using eq. (90),
once B

NV is fixed, this is equivalent to fixing the quantity H
3/2

e
12 �N

›
3. Neglecting

the (weak) dependence on the factor ›
3, this is equivalent to fixing fl

3/4
inf e

12 �N so that
fl

1/4
inf Ã e

≠4 �N .
The strong dependence of flinf in �N implies that ‡ should become inert very close

to the end of inflation. Under this condition, the model provides a possible explana-
tion for the observed presence of magnetic fields in the intergalactic medium, while
respecting current observational constraints from scalar modes, and without requiring
inflation to happen at energy scales below the TeV or so.

Concerning tensor modes, the tensor-to-scalar ratio is given in Eq. (3.6) of [1]:

r = p
t (n) H

4

M
4
pl

e
4fi›

›6 P≠1
R , (93)

where p
t (n) is plotted in Figure 1 of [1]. It is straightforward to see that r is pro-

portional to f
2/3
NL

N
≠2
‡ . In Fig. 3 we show the tensor to scalar ratio for fNL = 50,

N‡ = Nobs, for fNL = 10, N‡ = Nobs and for fNL = 50, N‡ = 200. In all cases the
tensor-to-scalar ratio in this model is too small to be detected both by future Earth-

6Note that our findings are consistent with those of [58], that has shown that the magnetic field produced
by the axial coupling is not strong enough to satisfy the blazar constraint if inflation happens at chaotic
inflation energy scales fl

1/4
inf ≥ 1016 GeV.

24

Figure 2: Constraints on the inflationary energy density in the model. We have imposed that
the magnetic field amplitude today satisfies eq. (87) with B

NV = 10≠17 G. The top blue curve is
obtained by fixing f

equil
NL

= 50 and N‡ = Nobs, the curve in the middle has f
equil
NL

= 10, still with
N‡ = Nobs. Finally, the curve at the bottom has f

equil
NL

= 50 with N‡ = 200. In all the curves we
have assumed that �N = 0. The energy scale of inflation quickly decreases as we increase �N , as
it goes as e

≠4 �N .

105 . fl
1/4
inf . 108 GeV as6

n varies from ≠2 to 0. This expression is valid for �N = 0,
and should be rescaled by ≥ e

≠4 �N for �N ”= 0. To see this, let us note that by
choosing a fixed value of fNL we are fixing the combination e

6fi›
H

6
/›

9. Using eq. (90),
once B

NV is fixed, this is equivalent to fixing the quantity H
3/2

e
12 �N

›
3. Neglecting

the (weak) dependence on the factor ›
3, this is equivalent to fixing fl

3/4
inf e

12 �N so that
fl

1/4
inf Ã e

≠4 �N .
The strong dependence of flinf in �N implies that ‡ should become inert very close

to the end of inflation. Under this condition, the model provides a possible explana-
tion for the observed presence of magnetic fields in the intergalactic medium, while
respecting current observational constraints from scalar modes, and without requiring
inflation to happen at energy scales below the TeV or so.

Concerning tensor modes, the tensor-to-scalar ratio is given in Eq. (3.6) of [1]:

r = p
t (n) H

4

M
4
pl

e
4fi›

›6 P≠1
R , (93)

where p
t (n) is plotted in Figure 1 of [1]. It is straightforward to see that r is pro-

portional to f
2/3
NL

N
≠2
‡ . In Fig. 3 we show the tensor to scalar ratio for fNL = 50,

N‡ = Nobs, for fNL = 10, N‡ = Nobs and for fNL = 50, N‡ = 200. In all cases the
tensor-to-scalar ratio in this model is too small to be detected both by future Earth-

6Note that our findings are consistent with those of [58], that has shown that the magnetic field produced
by the axial coupling is not strong enough to satisfy the blazar constraint if inflation happens at chaotic
inflation energy scales fl

1/4
inf ≥ 1016 GeV.

24

Figure 2: Constraints on the inflationary energy density in the model. We have imposed that
the magnetic field amplitude today satisfies eq. (87) with B

NV = 10≠17 G. The top blue curve is
obtained by fixing f

equil
NL

= 50 and N‡ = Nobs, the curve in the middle has f
equil
NL

= 10, still with
N‡ = Nobs. Finally, the curve at the bottom has f

equil
NL

= 50 with N‡ = 200. In all the curves we
have assumed that �N = 0. The energy scale of inflation quickly decreases as we increase �N , as
it goes as e

≠4 �N .

105 . fl
1/4
inf . 108 GeV as6

n varies from ≠2 to 0. This expression is valid for �N = 0,
and should be rescaled by ≥ e

≠4 �N for �N ”= 0. To see this, let us note that by
choosing a fixed value of fNL we are fixing the combination e

6fi›
H

6
/›

9. Using eq. (90),
once B

NV is fixed, this is equivalent to fixing the quantity H
3/2

e
12 �N

›
3. Neglecting

the (weak) dependence on the factor ›
3, this is equivalent to fixing fl

3/4
inf e

12 �N so that
fl

1/4
inf Ã e

≠4 �N .
The strong dependence of flinf in �N implies that ‡ should become inert very close

to the end of inflation. Under this condition, the model provides a possible explana-
tion for the observed presence of magnetic fields in the intergalactic medium, while
respecting current observational constraints from scalar modes, and without requiring
inflation to happen at energy scales below the TeV or so.

Concerning tensor modes, the tensor-to-scalar ratio is given in Eq. (3.6) of [1]:

r = p
t (n) H

4

M
4
pl

e
4fi›

›6 P≠1
R , (93)

where p
t (n) is plotted in Figure 1 of [1]. It is straightforward to see that r is pro-

portional to f
2/3
NL

N
≠2
‡ . In Fig. 3 we show the tensor to scalar ratio for fNL = 50,

N‡ = Nobs, for fNL = 10, N‡ = Nobs and for fNL = 50, N‡ = 200. In all cases the
tensor-to-scalar ratio in this model is too small to be detected both by future Earth-

6Note that our findings are consistent with those of [58], that has shown that the magnetic field produced
by the axial coupling is not strong enough to satisfy the blazar constraint if inflation happens at chaotic
inflation energy scales fl

1/4
inf ≥ 1016 GeV.

24

Figure 2: Constraints on the inflationary energy density in the model. We have imposed that
the magnetic field amplitude today satisfies eq. (87) with B

NV = 10≠17 G. The top blue curve is
obtained by fixing f

equil
NL

= 50 and N‡ = Nobs, the curve in the middle has f
equil
NL

= 10, still with
N‡ = Nobs. Finally, the curve at the bottom has f

equil
NL

= 50 with N‡ = 200. In all the curves we
have assumed that �N = 0. The energy scale of inflation quickly decreases as we increase �N , as
it goes as e

≠4 �N .

105 . fl
1/4
inf . 108 GeV as6

n varies from ≠2 to 0. This expression is valid for �N = 0,
and should be rescaled by ≥ e

≠4 �N for �N ”= 0. To see this, let us note that by
choosing a fixed value of fNL we are fixing the combination e

6fi›
H

6
/›

9. Using eq. (90),
once B

NV is fixed, this is equivalent to fixing the quantity H
3/2

e
12 �N

›
3. Neglecting

the (weak) dependence on the factor ›
3, this is equivalent to fixing fl

3/4
inf e

12 �N so that
fl

1/4
inf Ã e

≠4 �N .
The strong dependence of flinf in �N implies that ‡ should become inert very close

to the end of inflation. Under this condition, the model provides a possible explana-
tion for the observed presence of magnetic fields in the intergalactic medium, while
respecting current observational constraints from scalar modes, and without requiring
inflation to happen at energy scales below the TeV or so.

Concerning tensor modes, the tensor-to-scalar ratio is given in Eq. (3.6) of [1]:

r = p
t (n) H

4

M
4
pl

e
4fi›

›6 P≠1
R , (93)

where p
t (n) is plotted in Figure 1 of [1]. It is straightforward to see that r is pro-

portional to f
2/3
NL

N
≠2
‡ . In Fig. 3 we show the tensor to scalar ratio for fNL = 50,

N‡ = Nobs, for fNL = 10, N‡ = Nobs and for fNL = 50, N‡ = 200. In all cases the
tensor-to-scalar ratio in this model is too small to be detected both by future Earth-

6Note that our findings are consistent with those of [58], that has shown that the magnetic field produced
by the axial coupling is not strong enough to satisfy the blazar constraint if inflation happens at chaotic
inflation energy scales fl

1/4
inf ≥ 1016 GeV.

24



Figure 3: The tensor to scalar ratio r. The three curves (top curve to bottom curve) give
the value of r as a function of n for the following values of fNL and N‡ : f equil

NL = 50 and
N‡ = Nobs, f equil

NL = 10 and N‡ = Nobs, and f equil
NL = 50 and N‡ = 200 .

a subsequent amplification at large scales by intra-cluster turbulence can in principle
explain the 10≠6 G fields observed at cluster scales.

On the other hand, the lower bound on magnetic fields in the intergalactic medium
strongly points toward a primordial origin, since astrophysical processes connected to
the presence of free charges and/or a medium have di�culties to operate in void re-
gions among structures. Therefore, a primordial generation mechanism able to provide
magnetic fields that fulfill the bound on the intergalactic magnetic field, and at the
same time have high enough amplitude at large scales O(Mpc) to initiate the galac-
tic dynamo, can in principle explain all present observations of magnetic fields in the
intergalactic medium, galaxies and clusters.

In [1] it was shown that the model under analysis here can provide seeds larger
than 10≠23 ÷ 10≠21 G at 1 Mpc, for a certain range of values of n, satisfying, at the
same time, the lower bound on intergalactic magnetic fields. Here we show that this
statement holds true also when the strict constraints on scalar nongaussianities are
taken into account, provided the auxiliary field does not stop rolling too far from the
end of inflation.

More precisely, we know that for the set of inflationary parameters H and › for
which the bound on f

equil
NL is saturated (the top curve in figure 2) the limit (87) is sat-

isfied. We then proceed to investigate whether for these parameter values the intensity
of the magnetic field can also be high enough to initiate the galactic dynamo. As done
in [1], we therefore impose the fulfillment of the equality in equation (87), obtaining
a relation between the magnetic field intensity B0 and correlation scale L0, which,
combined with the first equation in (84), provides the value of B0 and L0 as function
of nB, actually independently on the generation mechanism. Using these values we
calculate the amplitude of the magnetic field at the scale ¸ = 1 Mpc as a function of n,
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How about galactic magnetic fields?
Intensity of B at 1 Mpc scales for 

B=10-17 (1 Mpc/L)1/2 G

Dynamo 
optimistic 

and 
pessimistic 

lower 
bound

Figure 4: Magnetic field intensity at the Mpc scale as a function of n. In red, solid the value of
B0 at 1 Mpc obtained for the set of parameters (H, n) which saturate the current upper bound on
scalar non-gaussianities (the solid red curve in figure 2). In blue, dashed, the estimations of the
magnetic seed amplitude required to initiate the dynamo: 10≠21 G and 10≠23 G at 1 Mpc.

using Eq. (8) and the relation

B0 (¸) = B0

3
L0
¸

4 5≠|2n+1|
2

. (96)

We compare the resulting B0 (¸ = 1 Mpc) with the required amplitude of magnetic
seeds in galaxies on such scale, i.e. 10≠23 ÷ 10≠21 G. This is shown in figure 4.

For n = 0, i.e. for the case in which only the term Fµ‹F̃
µ‹ is active, the amplitude

of the produced magnetic fields is too small to initiate the dynamo. On the other
hand, for n Æ ≠1.5, inflationary magnetogenesis with added helicity can give rise to
magnetic seeds at 1 Mpc higher than 10≠23 G. The presence of the term ≥ Fµ‹F

µ‹ is
crucial at this aim, since it allows for redder spectral indexes nB < 2 than in the case
where only the parity violating coupling is present. Imposing an intensity of 10≠21 G
at the Mpc scale, on the other hand, requires n to be very close to ≠2. In this case the
magnetic field is close to scale invariant and the behavior of the inverse cascade [55–57]
can lead to scalings di�erent from those that gave eq. (84). Because of this, and of the
possibility of additional infrared e�ects, the plot of Figure 4 might need corrections in
this area.

6.3 Inflationary model with the gauge field coupled to the
inflaton.
We can also consider the scenario in which the gauge field Aµ is coupled to the inflaton,
without the presence of an auxiliary field, i.e.:

L = ≠1
2ÒµÏÒµ

Ï ≠ V (Ï) + I
2 (Ï)

3
≠1

4Fµ‹F
µ‹ + “

8 ‘µ‹fl⁄F
µ‹

F
fl⁄

4
. (97)

In this case, the non-minimal coupling between the inflaton and the gauge field leads to
a source in the equation of motion of the inflaton perturbations which dominates with
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Works with all 
constraints
if optimistic 
lower bound 
for dynamo is 

valid! 



Comments

• Despite the details, an order of magnitude estimate!

• Magnetic fields would be helical (detectable signature?)

• B<<nG at cosmological scales: no effects in CMB

• Another signature: chiral GWs (hard to see?)



Conclusions

• Inflationary magnetogenesis notoriously 
difficult problem 

• Presented a (not-so-)simple model consistent 
with observations


