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The problem

Primordial magnetic fields might have been generated during phase transitions or inflation in the
early Universe. How strong would the relics of those fields be today?
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Evolution of primordial magnetic fields

Primordial magnetic fields (PMFs) were born into a hot plasma composed of
quarks/protons, electrons, photons and neutrinos. We can use a fluid theory to describe their
evolution (Brandenburg+ 1996):

ds* = a*(t)(—dt* + dz; dz*)
u
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PMFs would have experienced turbulent MHD decay between magnetogenesis and recombination.



Kolmogorov’s philosophy

Decaying turbulence

T
e
&
I a
- A
.L\N
Q| < B
&) I
& +
=
| +
- -
mjES S
|
~<
&)
~

[ =

Van Dyke, Album of Fluid Motion #152, 1982



Decaying turbulence: Kolmogorov’s philosophy

T
I =1(FE,)\) =constant = A\~ E° .:,;-,
Canonical example: hydrodynamic turbulence B
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The “largest-processed-eddy relation™
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The “largest-processed-eddy relation™
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Under power-law decay, the decay timescale -15

is always equal to the “wall time”.

The usual assumption is 7 ~ A3/v,, the
Alfvénic timescale at scale A.
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The “largest-processed-eddy relation™

dE E Simple model of neutrino decoupling:

dt T(E, A, .. .)
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The problem of predicting the evolution of PMFs has two parts:
1. Whatis I(E,1)?
2. Whatis z(E, 1) at recombination?

These questions are distinct in principle, but I argue that the answer to the latter is informed by the former.



The role of magnetic topology: JB Taylor relaxation

Consider a magnetic configuration consisting of N closed flux tubes. For each one, the helicity

Vi

under ideal (flux-trozen) dynamics. We know from Moftatt (1978) that this quantity has a
topological interpretation: it is the flux linked by tube i.

Hi = ¢&,Ps
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Consider a magnetic configuration consisting of N closed flux tubes. For each one, the helicity
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under ideal (flux-trozen) dynamics. We know from Moftatt (1978) that this quantity has a
topological interpretation: it is the flux linked by tube i.
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Thus, under topology-preserving relaxation, we must have that By, = Bg,(H|, Hy, ..., Hy).



The role of magnetic topology: JB Taylor relaxation

This is inconsistent with experiment (both numerical and real-life): the final state of relaxation is

only weakly dependent on initial conditions.

... In the quiescent phase the plasma
profile 1s almost independent of any details of the initial state and depends principally
on the ‘pinch ratio’ 6 =B,/B,, where By 1s the poloidal field at the plasma boundary.

J. B. Taylor & S. L. Newton (2015)

ZETA toroidal pinch, Harwell, UK, 1958
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profile 1s almost independent of any details of the initial state and depends principally
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It is not difficult to see why — in real plasma, field lines are not
perfectly frozen in. With any finite resistivity, they can reconnect and
thus access new, lower-energy states.

ZETA toroidal pinch, Harwell, UK, 1958
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Remarkably,

H:ZHi:/dBwA-B

remains constant even under reconnection of magnetic—ﬁeld lines.
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By, = Bg,q(H) — amaximally helical Woltjer-Taylor state.



The role of magnetic topology: JB Taylor relaxation

Remarkably,
H — g H@ — /dgajA . B e _l |EW|PTI C|QCD|PT| | | |
7; 7= G%\ . i
: : : : . 3 Yo .
remains constant even under reconnection of magnetic-field lines. I
9 L = > -
5 11 AR Y ;
B, = By, (H) — a maximally helical Woltjer-Taylor state. &)
H ~ B*)\V ~ const => B*)\ ~ const -
-12-11-10-9 -8 -7 ?Og;)\ﬁ/f“ping -1 0 1 2 3 4

Adapted from Durrer & Neronov 2013



Helicity constrains “nonhelical” decay

The conservation law
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H = 0 globally but / # 0 locally.
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2D slice of h = A - B from simulation of MHD decay
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Helicity constrains “nonhelical” decay

The conservation law

oh
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implies the existence of a second invariant in the case that

H = 0 globally but / # 0 locally. Proof:

-+V-F=0, h=A-B, F=u(A-B)—B(A-u)— xB—nA x (V x B)
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Thus, I, is conserved by homogeneous isotropic turbulence

ith spatial correlations that decay sufhiciently fast.
WItH Sp Y y 2D slice of h = A - B from simulation of MHD decay
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Helicity constrains “nonhelical” decay
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Helicity constrains “nonhelical” decay
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The problem of predicting the evolution of PMFs has two parts:
1. Whatis I(E, 1)?
2. Whatis z(E, A) at recombination?

These questions are distinct in principle, but I argue that the answer to the latter is informed by the former.



Sweet-Parker reconnection
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Sweet-Parker reconnection

——
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T AT v/o*  Pm  with viscosity rather than inertia (Park et. al. 1984).
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Sweet-Parker reconnection

——
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Plasmoid-mediated reconnection

Sweet-Parker sheets are unstable to the plasmoid instability (Loureiro 2007) for S > S, ~ 10°.



Plasmoid-mediated reconnection
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Between plasmoids, we have Sweet-Parker sheets. The inflow velocity is just the SP one with § = S, ~ 10°.

The reconnection rate is then (Uzdensky et. al. 2010)
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Numerical evidence for plasmoid-mediated decay laws
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Conclusions

The decay of primordial magnetic fields is likely controlled by topological invariants
related to magnetic helicity, whose relevance to decay is precisely that they are conserved

even durin 7 ma gnetz’c reconnection.
Reconnection allows the decaying fields to access lower-energy states ( Taylor relaxation).

Thus, we expect the decay timescale to be the one for magnetic reconnection. This results
in significant suppression of the decay, owing to the large magnetic Prandtl number of the
early Universe.



