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Principal Efffect

Upper Limit References
spectral distortions 30-40 nG Jedamzik et al. 2000

Kunze & Komatsu 2014

plasma heating 0.63-3 nG Sethi & Subramanian 2004
Kunze & Komatsu 2014

Chluba et al. 2015
Planck collaboration 2015

direct TT anisotropies 1.2 - 6.4 nG Subramanian et al. 1998, 2002, 2003
Yamazaki et al. 2010
Paoletti & Finelli 2010
Shaw & Lewis 2010

Caprini 2011
Paoletti & Finelli 2013

Planck collaboration 2015
Zucca et al. 2016
Sutton et al. 2017

non-Gaussianity bispectrum 2-9 nG Brown & Crittenden 2005
Seshadri & Subramanian 2009

Caprini et al. 2009
Cai et al. 2010

Trivedi et al. 2010
Brown 2011

Shiraishi et al. 2011
Shiraishi & Sekiguchi 2014
Planck collaboration 2015

non-Gaussianity trispectrum 0.7nG Trivedi et al. 2012

non-Gaussianity trispectrum
with inflationary curvature mode 0.05nG Trivedi et al. 2014
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Primordial Magnetic Fields and the CMBR:

karsten1

karsten1
21 cm and galaxy formation
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Katz et al 2021
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small-scale baryon inhomogeneities set the strongest limit : 
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~0.01nG (phase transiton) 0.1nG (inflation) 
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K.J. & Saveliev 19
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-> potential for discovery
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these are the approximate field strength to explain
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cluster magnetic fields without dynamo
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spectral distortions
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plasma heating
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TT anisotropies

karsten1
non-Gaussianity
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however, old data, and toy model
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Physical conditions shortly before recombination:
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the photon mean free path is ~ 1Mpc
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large magnetic modes L >> 1 Mpc subject to photon diffusion 
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small magnetic modes L << 1 Mpc subject to strong photon drag
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the effective speed of sound for small modes is the 
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small baryonic speed of sound
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viscous and compressible MHD on small scales
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unlike adiabatic modes, small scale magnetic modes survive Silk damping
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A correlation of magnetic field strength with length scale
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Production of density fluctuations before recombination

Viscous MHD evolution with free-streaming photon drag:
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the three important terms 

back of the envelope estimate: 

Jedamzik and Abel 2011

Imagine now magnetic fields on ~ kpc comoving scales before recombinationWhy baryon inhomogeneities on small ~ kpc scales ?
photons are free-streaming on these scales i.e. cs = c/sqrt(3) -> cb
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Weak Magnetic Fields and the CMBR

dv/dt+ v2/L+ c2S(δ"/")/L = v2A/L+ αv

d(δ"/")/dt+ v/L = 0

v ! v2A/(Lα) unless pressure forces δ"/"<∼(vA/cs)2

→ δ"/" ! vt/L ! v2At/(L
2α)

until either decay at v/L ! 1/t or pressure force

backreaction

→ δ"/" ! min
[

1, (VA/Vs)2
]
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K.J. and Abel 2013
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Back of the envelope estimate of the inhomogeneities:
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initial conditions: zero velocity and homogeneous
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schematic Euler and continuity equations
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initially only the terms on the RHS are important
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scaling confirmed by numerical simulations



cs = 6.33
km

s

vA =
B√
4π"

= 5.79
km

s
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)
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It doesn’t take much field:
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isothermal speed of sound at recombination
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usually we talk about nGauss fields visible in the CMB

karsten1

karsten1
-> order unity density fluctuations for ~ 0.05 nG



Numerical simulations of compressible MHD before recombination
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inflationary produced fields
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phase transition produced fields
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clumping factor:
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b = <rho^2-<rho>^2>/<rho>^2
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First full MHD simulations:
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scale factor (a=1 at recombination)
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K.J. and Saveliev 2018
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final field 10 pG



Jedamzik and Abel, arXiv:1108.2517, JCAP (2013)

Inhomogeneities enhance the recombination rate
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C is clumping factor
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does LCDM need to be amended ?
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early time solutions
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late time solutions
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reduction of sound horizon
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increase of distance to last
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scattering surface
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Hubble tension
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small-scale clumping could relieve the tension
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Alternative sources of small-scale baryon clumping:

karsten
Enhanced small-scale adiabatic fluctuations do not survive Silk-damping
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Extra baryon isocurvature fluctuations violate BBN constraints
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B-balls or quark nuggets evaporating before recombination also violate BBN constraints 
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Baryon inhomogeneities produced by cosmic strings may not reach high volume filling factors
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Short falls of the three zone toy models:
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ad hoc baryon density pdf
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no evolution of clumping
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plus new effects found
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Towards a complete calculation of PMFs influencing recombination
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requires extensive MHD simulations
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for comparison to CMB requires high accuracy
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MHD simulations give you a direct connection between PMF properties and CMB signal 



e+H+ → H0 + γ

e+He+ → He0 + γ

direct recombination into ground state
releases photon releases photon

Karsten Jedamzik, Aachen September 4, 2019 – p. 2/7
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Cosmic Recombination - a Quick Summary
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direct recombination into the ground state, immediately ionizes elsewhere -> no net recombination
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ionization into excited states, produces a casade of resonance photons, with the last often a
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Lyman-alpha photon

karsten1
(i.e. 2p->1s transition).
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This Lya photon excites a neutral atom elsewhere, 
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The excited 2p atom will to the highest probability be photo-ionized by CMB photons
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->no net recombination
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frequent attemps of recombining drives the Lya occupation number to super-thermal values,
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such that n2p/n1s is out of equilibrium
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there is only one way to have a net recombination, 

karsten1
for hydrogen there are two possibilities:
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a slow two-gamma transition from 2s->1s + 2gamma
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redshifting of Lya photons out of resonance by Hubble expansion
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loss of Lya resonance photons,
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Inhomogeneous Recombination due to Primordial Magnetic Fields 
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K.J., T. Abel, and Y Ali-Haimoud astro-ph 2312.11448
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physical effects to be considered:
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clumping of baryons
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evolution of this clumping
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Lyman-alpha photon transport
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locally varying speed of sound of fluid
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locally varying photon drag on fluid
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loss of Lya photons due to pecuilar motions
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we combined:
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MHD fluid code ENZO 

karsten1
Greg Bryan et al 2014
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(note: three other codes failed)
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new cosmic recombination code
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proper Monte-Carlo simulations of Lya loss
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we are not aware of any missing physics (so far)
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coupled to
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Attention: astro-ph/2312.11448v2



Comparison to numerical simulations
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The Monte Carlo simulations:
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(1) inject photon from Voigt profile
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(3) take into account the redshifting between scatterings
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(2) determine when and where it excites a 2p state 
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(4) determine if the 2p state either (a) spontaneously de-excites into the 1s state 
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(b) decays via the two-photon transition -> net recombination

karsten1
or much less likely
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(c) gets ionized by a CMB photon -> no net recombination
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in case (a) go to (5), in case (b) and (c) go to (1) - inject another photon
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(5) the de-excitement is effectivly scattering.
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compute the photon energy and direction
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after scattering
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photons which are lost to redshifting
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get smaller and smaller energy
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and do not scatter anymore
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photon energy



Comparison to numerical simulations
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Fraction of photons which 
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travel further than D (kpc)
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redshift z
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The typical length scale of inhomogeneities is 0.1 - 1 kpc
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depending on magnetic field strength
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-> Lyman-alpha photons mix, recombination not local anymore
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The growth of the integral scale after recombination

ṅe|rec = −C
(

αen2
e − βen1se−Eα/Tγ

)

blablablabC = Λ2γ+Rα

βe+Λ2γ+Rα
, Rα = 8πH

λ3
αn1s

ṅe|rec = −Cmix
(

αen2
e − βen1se−Eα/Tγ

)

blablablabl−(1− Cmix)αe

(

n2
e − n1s

〈n1s〉
〈n2

e〉
)

Rmix
α ≡ 8πH

λ3
α〈n1s〉
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karsten1

karsten1

karsten1

karsten1

karsten1
The recombination equation in a clumpy Universe with full Ly-a mixing
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The standard recombination equation in a homogeneous Universe:
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derived from the Boltzman equation:
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Peebles C factor ~ 0.02 at redshift 1100

karsten1
-> recombination delayed

karsten1
2nd new term parametrically larger
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but averages to zero



C = Λ2γ+Rα

βe+Λ2γ+Rα
, Rα = 8πH

λ3
αn1s

, H → H +∇ · v/3

blablablablablablablablablablablablabla (∇·v)rms ∼ 20H
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The effects of peculiar flows:
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enhancement of
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Lyman-a losses
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naively C 
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substantially larger
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0.1 kpc
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analytic result
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Length scale
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-> for “larger” B ~ 0.1nG (final field)

karsten1
extra speed-up of recombination
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limit large length scale of inhomogeneity
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Peculiar flows and Lyman-alpha escape
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only hydrodynamic heating
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standard, no PMF
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only clumping
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clumping and heating
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Limits on PMFs from hydrodynamic heating ?
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Constraints come from
clumping effects at z ~ 1100
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Hydrodynamic heating induces an excess of Xe at z < 800
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this may be constrained by the enhanced optical depth
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However
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When heating and clumping is treated there is no excess in Xe at z < 800 
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Sethi & Subramanian 04
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Processing of scales (single mode)
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viscous
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Processing of modes seems somewhat delayed during turbulence
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Magnetic Field energy density
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Baryon overdensity
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z = 3000
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z = 1000
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z = 100
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initial conditions: 
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at z = 4500:
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zero velocities
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baryons uniform
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Box size 24 kpc
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Batchelor spectrum
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non-helical
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Baryon probability distribution function and evolution
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MHD
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M1
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MHD
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Baryon Overdensity
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PDF significantly different from 3-zone models
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Magnetic energy density
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RMS velocity over speed of sound
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Clumping factor
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A sample simulation -> general trends
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—> initial field 0.52 nG

karsten1
—> Batchelor spectrum
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—> all k=1 to 8 modes excited
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—> non-helical
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> 99% energy dissipated
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final field 0.043 nG
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transition from viscous to turbulent regime
at recombination
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Relative change to LCDM ionization fraction
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comparison three zone model
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no Lyman-alpha mixing

karsten1
full Lyman-alpha mixing
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Lyman-alpha mixing according to MC
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no reduction speed of sound
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The CMB data is sensitive to such changes
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Ultraviolet modes in Batchelor spectrum

karsten1
clumping peak at z= 20000
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clumping peak at z = 33000
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Somewhat surprising dependency of results on ultraviolet modes
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modes which have there peak in clumping at z ~ 1000 should be most important
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k
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= 8.4 
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clumping peak at z = 1500
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min
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Comments on the results Trivedi, Banerjee, …. 



The integral scale

The integral scale L is defined by the condition
vA/L ≈ H

wave vector k

Ek
turbulent direct cascade

Integral scale
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Karsten Jedamzik, Aachen September 4, 2019 – p. 9/25

karsten1

karsten1
Initial conditions:
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inertial range
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these are the initial conditions
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these are NOT
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The fluid is in a highly viscous state at redshifts z >>10000
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v -> 0, rho-> 0
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Reynolds number R ~ 1 
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R ~ 1 -> Integral scale IS THE dissipation scale
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z = 1000
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z = 2000
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z = 3000
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z = 4000
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z = 500
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z = 100
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z = 10

karsten1

karsten1

karsten1

karsten1

karsten1

karsten1

karsten1

karsten1
Overdensities Delta we find with ENZO 
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baryon pdf
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very small fraction of volume
at very large Delta > 10
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24 kpc box
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256^3
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modes resolved by minimum 32 zones 
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B_ini = 0.52 nG, B_fin = 0.043nG 
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clumping factor enhanced by
that
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Drop of speed of sound during recombination
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cs = const
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realistic cs 
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clumping enhanced by drop of speed of sound
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…, Trivedi, Banerjee
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K.J., Abel, Ali-Haimoud
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z = 100 - 5000
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z = 10 - 4500
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initial conditions with inertial range
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initial conditions pure Batchelor
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strengths up to 0.2nG
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strengths up to 2 nG
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512
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(waste of CPU power)
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256
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3
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3
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b_max ~ 0.3 
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b_max ~ 1.5 for 0.52 nG
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Flash code and Pencil code
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Enzo code and private code
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dissipated energy 70 %
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dissipated energy 99%
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resolution ?
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resolution minimum 32 zones per mode
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box size 2.4 kpc
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box size 24 kpc
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???
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cs = constant
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varying cs
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Resolution: direct comparison of well-defined test runs
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Complicating factors of the calculations:
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many MHD codes can not handle large over-densities 
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only a determination of the baryon pdf and it’s evolution is not sufficient
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2D simulations give largely incorrect results
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dynamic range of ~50 (at least for scale-invariant fields)  required is difficult in 3D
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First (preliminary) trends of the numerical study:
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(for Batchelor spectrum easier)
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the three-zone models M1 and M2 are a bad presentation of the baryon pdf
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somewhat larger field strength are required for the same effect as priorly believed
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the maximum modification of the ionisation fraction happens a bit earlier than in M1/M2
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Lyman-alpha transport and the reduction of cs during recombination are very important
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extensive CPU time is needed
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dependency on UV modes for Batchelor
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Lyman-alpha transport difficult, but manageable for smaller field strength

karsten1
peculiar velocity effects complicate things for larger field strength
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code dependency of result ????
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The CMB is a relatively clean and precise probe of PMFs
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Baryon clumping due to PMFs leaves a distinct impact on the anisotropies in the CMB
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It still needs to be theoretically calculated with precision which turns out to be difficult
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PMFs are the only well motivated possible partial solution to the Hubble tension


