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summary

® The universe is magnetized.
Early Universe Generation

9
® Evolution in 3 Avatars
9

Magnetic signals

R. Durrer, A. Neronov,Cosmological Magnetic Fields: Their Generation, Evolution
and Observation. A&A Review, 21, 62 (2013).

K. Subramanian, The origin, evolution and signatures of primordial magnetic
fields, Rep. Prog. Phys. 79, 076901 (2016).

T. Vachaspati, Progress on cosmological magnetic fields, Rep. Prog. Phys. 84,
074901 (2021).

A. Shukurov and K. Subramanian, Astrophysical Magnetic fields: From Galaxies to
the Early Universe, CUR 2021.

Generation, evolution, and observations of cosmological magnetic fields, May 13, 2024 - p.1/15



The Universe is magnetized

® Cosmic fields from synchrotron emission/polarization and Faraday
Rotation, Polarized emission by dust

®» Galaxies: B ~ 10uG, ordered on 10 kpc scales + random component

®» B~ uuGeveninYoung:z ~ 1— 2 galaxies
(Bernet et al. 2008; Malik, Chand, Seshadri 2020.)

® Clusters of Galaxies: few .G strengths on ~ 10 kpc scales.
IGM Filaments: ~ 10 nG (Carretti, O’Sullivan + 2023)

® Eveninthe IGM voids? (B > 10~ 1% Gauss; Mpc scales)
(Neronov and Vovk, 2010, MAGIC+2022; BUT Broderick et al., 2011)

How do such large scale fields arise?
Seeds from batteries or early universe + Dynamos?

How can One Generate/Detect Primordial B fields?
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Galactic Magnetic Fields: Observations

SOFIA Legacy Program, M51: Borlaff, Rodriguez Lopez,....KS+ ApJ (2021)

(FIR 145 .m) (Radio 6 cm Fletcher et. al)
How do such large scale galactic fields arise? Turbulent dynamos?
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Gamma-Ray Consfraints on B

I, = 80Mpc (E~/10TeV) ™!, l;c = 30kpc (Ee/10TeV) ™!, Evo = (4/3)72Eca = 0.8GeV (E-/TeV)?

Secondary ¥-ray emission from the electromagnetic cascade

TeV y rays are absorbed in
interactons with
Extragalactic background As a result, e™-e
light (EBL) pairs with energy
EF ~ Evo |
are produced in ¢'-¢" pairs upscatter CMB
the itergalactic radiation and produce
space secondary, GeV photons with
energy

= 2 ST

Ev (4/3) € ( E/mc ) =

~88[F,/10 TeV] Gev

Blazar

In the presence of magnetic
field are deflected away from
the observer. Deflection regime
depends on the correlation
length of the magnetic field.
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levgen Vovk
Constraints on the EGMF from Fermi/LAT
observations of TeV blazars

Primordial magnetism 2011,
Tempe. 31.03.2011

B in voids bigger than 10~ Gauss on Mpc scales!
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Origin: Primordial?

® Primordial magnetic fields: Origin in the early universe:
Inflation (Strength?) Electroweak, QCD PT (Scale?).

® Naturally explains void fields.
® Not essential for stars/galaxies/clusters BUT

#® [f strong can put dynamo in different regime, influence
recombination, first stars/black holes...?

#® Helical fields resist turbulent decay (Kemel,Axel,Ji 11; Bhat,EB,KS, 14)

® Detecting relic B fields can probe early universe physics?

® Flux freezing: On large scales B(t)a?(t) = constant, So
B(z) = Bo(1 + 2)?

® /,p = p, (due to CMB) implies By ~ 3uG.

® B, ~ 107G on galactic scales, interesting for Galaxy
formation + galaxy/cluster B?
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Primordial fields origin during Inflafion?

(Turner and Widrow, 1988; Ratra 1992; Gasperini et al. 1995, )

» Rapid expansion — EM wave vacuum fluctuations amplified
and stretched to long wavelength “classical” fluctuations

» BUT Need to break conformal invariance of ED (Couple to inflaton
¢, higer dimensional scale factor b(t), curvature R, axion 6 ...)

1
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® EM Normal modes satisfy: A" + ZfTIA’ + k%A =0

Scalar curvature perturbations satisfy above with f = z = a¢/H.

® Affer reheating E shorted out and B frozen in.
Exponentially sensitive to parameters, as need pp ~ 1/a°

® Scale invariant spectrum for f o« a?, f oc a™3; By ~ 0.5nG(H /1074 M)
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Consistent Inflationary Magnetogenesis?

harma, Sandhyaq, Seshadri, Subramanian, PRD, 2017; Sharma, Subramanian, Seshadri 2018

® Strong backreaction for f « a3 due to E field growth. For f « a2,
‘’charge’ ex = ¢/ f?, can become very large/small. (Demozzi et al, 2009)

® Schwinger effect creates charge if electric field is large enough, and
freezes B amplification? Kobayashi, Afshordi, 14

® Consider models with matter dominated epoch after inflation before
reheating, where f decreases back to 1.

® Forkn< 1, A=cy+co [dr/f?;for growing/decaying f, c1/c2 branch is
growing mode. As f decays, branch transition — blue spectrum

» Require low scales of inflation and reheating to avoid back reaction. Blue
Spectrum: dpp /dInk o k*

® Reheating T = 100 GeV (EW), initial B ~ 0.6.G, L. ~ 3 x 10'°cm. Turbulent
decay leadsto By ~ 7 x 10713G, L. ~ 0.2 kpc

® Helical: B ~ 0.3:G, same L.. Turbulent decay with inverse cascade gives
B ~26x 107116, L. ~ 70 kpc . How to Probe?
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Gravitational Wave Predictions
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Predictions for 1% in EM energy and Tz = 100 GeV
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GW predictions from simulations

Brandenburg and Sharma, ApJ, 920, 26, 2021
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Sharper fall-off after peak as turbulent cascade takes time to develop
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Evolution in expanding universe: |

© o o o

°

°

B2 /(8T praq) ~ 107 (B/nG)?, Va/c~ 4 x107*(B/nG)

Magnetic stress = metric perturbations, including Grav. Waves
Lorentz force J x B/c = almost incompressible motions
Conductivity high, Viscosity important around ~/v decoupling.
Overdamped by radiative viscosity, unlike compressible
modes. (Jedamzik et al, 1998; Subramanian & Barrow 1998)

Survives damping for L 4 > (Va/c¢)Lgir. < Lsik

CMB signals from metric and velocity perturbations

Post recombination: n,.,;/n;, > 1 = compressible motions =
seeds ip/p = First Structures+ inhomogeneous recombination?

B field Dissipation — lonization, Heating, Molecules

Coherent primordial fields potentially detectable
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Planck Consfraints on primordial B & np

» CMB signals fromm metric and velocity perturbations
Alfvén waves: (KS,JDB 98; Durrer/Caprini/Kahniashvilli 98, TRS,KS 01)

® Bfield Dissipation — lonization, Heating

(Sethi,KS 05,Kunze/Komantsu 15, Chluba/Paoletti/Finelli+15/18)
Ade et al. (Paoletti/Finelli+15)

™ | |

B Planck TT+lowP:C
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$® Strong sub nano Gauss upper limit from CMB Non-Gaussianity
(TRS/KS, 09; Caprini/Paoletti/Finelli/Riotto 09, Trivedi/TRS/KS 12;14 )
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Evolution in expanding universe: |l

® Blue spectra induce decaying MHD turbulence as coherence scales enter
the Horizon, and v 4 k7 = 1 with inverse cascade/transfer. (Banerjee,
Jedamzik, 04; Brandenburg+ 15, Zrake 14.....)
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® Timescale: Alfvenic? Reconnection? (Bhat,Zhou,Louriero, 21;
Zhou,Bhat,Louriero, 20; Hosking,Schekhocihin, 21, 23)

B Helical: Conservation of helicity B2L constant; B o 7—1/3? B « t—2/72

® Nonhelical: conservation of Helicity (fluctuations) Saffman invariant: 7;?
Anastrophy < 42 >? (HS21, Zhou.H+22 or BZL21, Dwivedi+24)

® Partial helical decay completely different from fully helical. What level of
helicity fluctuations required? Consistency 4 Causality
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Helicity flutuations

Dwivedi, Anandavijayan, Bhat, 2024
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PDF of cos 6 (0 is angle between A and B).

® Helical: PDF strongly peaked around cos§ = +1

® Nonhelical: PDF almost uniformly distributedi in cos 6; no strong peak at
cos b ~ =+1.

Generation, evolution, and observations of cosmological magnetic fields, May 13,2024 - p.13/15



Evolution: |l

o

o

When \, > L: n,.q/npy > 1 = compressible motions = seeds dp/p =
Inhomogeneous recombination (Hubble tension)? (Jedamzik, Pogosian)

Perturbed density: §, = —V - &, displacement: £(x,t), v = a0€/0t,
B =By +b,b=V x (£ X Bg). Then ¢, satisfies (KS, JDB 98)

2 4 ) 2 -S
o+ (2H + hrneor) B — ¢} BV, —47C pmdm = St

So = [Bo X (VX Bg)|+ [b x (V x Bg)]+ [Bo x (V X b)]
Uniform By, damped MHD waves with £ < k,,4.. FOr Bo = B_g nG at kynaz,

1/4

Random B sources ¢,; Be careful re, baryon pressure By > 50 pG,
spectral index, back reaction due to b, transition in damping nature:

Ap ~ 3.5 x 107° B2 4 (k/Mpc™ 12 (Qmh?/0.15) "2 ((1 + 2) /103) ~>/2
(Talks by Karsten, Pranjal T, Pranjal R, Fabio ...)

First Structures when back reaction due magnetic pressure of B, smaller
than gravity: k < kj ~ 15Mpc~ ' B_,. (Sethi, KS 05)
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% Final Thoughts?
o

® Universe is turbulent and Magnetized; even B field in voids!

®» Dynamos needed to maintain fields in collapsed objects BUT
how to get fields in voids?

® The first fields could be generated from early universe: Inflation/phase
transitions? Helical magnetic fields particularly interesting.

® Primordial fields leave signatures in CMB, Structure formation,
Gamma Rays, Stochastic GW Background

® Understanding primordial field origin and evolution still
challenging with many interesting open questions

® Future probes with Radio RMs (SKA), 21 cm (SKA), High energy
CRs, Gamma Rays and Gravitational wave observations!
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