Galactic Magnetic Field: some Puzzles Michael Kachelrieß NTNU, Trondheim

with C.Becker, G.Giacinti, D.Semikoz, ...

< ->

Outline:

- Introduction: CRs as probe for the GMF
- GMF models
 - \blacktriangleright input: RM, $I_{\rm syn}$, and polarisation U, Q
 - status of models
- CR escape in GMF models
 - connection to diffusion picture
 - isotropic vs. anisotropic diffusion
- C-BASS and polarisation data
- TeV halos
- Extended halo model
- Summary

[Giacinti, MK, Semikoz '12ff]

- 4 回 ト 4 ヨ ト 4 ヨ ト

Bernoulli Workshop 5/2024

[Becker]

э

2/28

CRs as probe for turbulent magnetic fields:

- Galactic magnetic field: regular + turbulent component turbulent: fluctuations on scales $l_{\max} \sim (10 - 150) \text{ pc to } l_{\min} \ll l_{\max}$
- relevant scales:
 - fast modes with $kR_L \gg 1$: irrelevant
 - ▶ slow modes with $kR_L \ll 1$: act locally as uniform field B_0
 - CRs scatter on modes with $kR_L \sim 1$

Larmor radius

$$R_{\rm L} = \frac{cp_{\perp}}{ZeB} = \frac{\mathcal{R}}{B} \simeq 1.08 \,\mathrm{pc} \,\frac{\mathcal{R}}{\mathrm{PV}} \,\frac{\mu \mathrm{G}}{B}$$

 \Rightarrow CRs probe modes between $(10^{-7} - 1) \, \mathrm{pc}$

CRs as probe for turbulent magnetic fields:

- Galactic magnetic field: regular + turbulent component turbulent: fluctuations on scales $l_{\rm max} \sim (10 - 150) \, {\rm pc}$ to $l_{\rm min} \ll l_{\rm max}$
- relevant scales:
 - fast modes with $kR_L \gg 1$: irrelevant
 - ▶ slow modes with $kR_L \ll 1$: act locally as uniform field B_0
 - CRs scatter on modes with $kR_L \sim 1$

• Larmor radius

$$R_{\rm L} = \frac{cp_{\perp}}{ZeB} = \frac{\mathcal{R}}{B} \simeq 1.08 \,\mathrm{pc} \,\frac{\mathcal{R}}{\mathrm{PV}} \,\frac{\mu \mathrm{G}}{B}$$

$$\Rightarrow\,$$
 CRs probe modes between $(10^{-7}-1)\,$ pc

CRs as probe for turbulent magnetic fields:

- Galactic magnetic field: regular + turbulent component turbulent: fluctuations on scales $l_{\rm max} \sim (10 - 150) \, {\rm pc}$ to $l_{\rm min} \ll l_{\rm max}$
- relevant scales:
 - fast modes with $kR_L \gg 1$: irrelevant
 - ▶ slow modes with $kR_L \ll 1$: act locally as uniform field B_0
 - CRs scatter on modes with $kR_L \sim 1$

Larmor radius

$$R_{\rm L} = \frac{cp_{\perp}}{ZeB} = \frac{\mathcal{R}}{B} \simeq 1.08 \,\mathrm{pc} \; \frac{\mathcal{R}}{\mathrm{PV}} \; \frac{\mu \mathrm{G}}{B}$$

 \Rightarrow CRs probe modes between $(10^{-7} - 1) \, \mathrm{pc}$

GMF observables

- unpolarised synchrotron intensity $I \sim \int_{L \cap S} ds n_{cre}(\boldsymbol{x}, E) B^{\alpha}_{\perp}(\boldsymbol{x})$
- polarised synchrotron intensity P or Q, U
- rotation measure $\mathrm{RM} \sim \int_{\mathrm{Loss}} ds \, n_e(\boldsymbol{x}) B_{\parallel}(\boldsymbol{x})$

GMF observables

- unpolarised synchrotron intensity $I \sim \int_{\text{L.o.S.}} ds \, n_{\text{cre}}(\boldsymbol{x}, E) B^{\alpha}_{\perp}(\boldsymbol{x})$
- polarised synchrotron intensity P or Q, U
- rotation measure ${
 m RM} \sim \int_{{
 m L.o.S.}} ds \, n_e({\it x}) B_{\parallel}({\it x})$

- standard approach:
 - only coherent field contributes to P and RM
 - CR electron density $n_{cre}(\boldsymbol{x}, E)$: fixed, independent of GMF

E 6 4 E 6

Status of GMF models

JF12 has become a "standard":

- fitted to RM and synchrotron data, 22 parameters for regular field
- (weak) spiral disk field:

Status of GMF models

JF12 has become a "standard":

- fitted to RM and synchrotron data, 22 parameters for regular field
- halo + X-field

• propagation along X field eases CR escape

Problems of GMF models I

- thermal electron density $n_{\rm e}(\boldsymbol{x})$ poorly constrained by DM's
- CR electron density $n_{\rm cre}(\boldsymbol{x}, E)$ fixed
- $L_c \sim 150 \, {\rm pc}$ and $L \simeq 7 \, {\rm kpc} \Rightarrow N = L_{\rm max}/L \sim 10$, $N_{\rm eff} \sim {\rm few}$

3

< □ > < □ > < □ > < □ > < □ > < □ >

Problems of GMF models I

- thermal electron density $n_{
 m e}({m x})$ poorly constrained by DM's
- CR electron density $n_{\rm cre}({\pmb x}, E)$ fixed
- $L_c \sim 150 \, {\rm pc}$ and $L \simeq 7 \, {\rm kpc} \Rightarrow N = L_{\rm max}/L \sim 10$, $N_{\rm eff} \sim$ few
- B from RM is factor few smaller than from synchrotron:

(B)

[[]Di Bernardo et al. '19]

 $[\]Rightarrow b \gg B$ $\Rightarrow \text{ isotropic diffusion}$

Problems of GMF models II

• data are too sparse to constrain (severely) models

new suit of 8 UF24 models

 \Rightarrow talk by M. Unger

(日) (同) (日) (日)

Approaches to CR propagation

UHECRs:

- use model for Galactic Magnetic Field
- calculate trajectories $\boldsymbol{x}(t)$ of individual CRs via $\boldsymbol{F}_L = q \boldsymbol{v} \times \boldsymbol{B}$.
- ▶ all fluctuations between l_{max} and $\sim R_L/10$ have to be included ⇒ trajectory approach computationally very expansive for $E \searrow$
- ② Galactic CR, low energies:
 - CRs as relativistic fluid
 - use effective diffusion picture
 - connection to GMF only indirect:
 - ***** use quasi-linear theory to connect D(E) and P(k)
 - ★ D is factor 50-100 too small

[Strong, Ptuskin, Moskalenko '07]

★ use D instead as fit parameter

< □ > < □ > < □ > < □ > < □ > < □ >

Approaches to CR propagation

UHECRs:

- use model for Galactic Magnetic Field
- calculate trajectories $\boldsymbol{x}(t)$ of individual CRs via $\boldsymbol{F}_L = q \boldsymbol{v} \times \boldsymbol{B}$.
- ▶ all fluctuations between l_{max} and $\sim R_L/10$ have to be included ⇒ trajectory approach computationally very expansive for $E \searrow$
- **Galactic CR**, low energies:
 - CRs as relativistic fluid
 - use effective diffusion picture
 - connection to GMF only indirect:
 - ***** use quasi-linear theory to connect D(E) and P(k)
 - ★ D is factor 50-100 too small

[Strong, Ptuskin, Moskalenko '07]

★ use D instead as fit parameter

< □ > < □ > < □ > < □ > < □ > < □ >

Standard diffusion approach

Standard diffusion approach:

Michael Kachelrieß (NTNU Trondheim)

Standard diffusion approach:

- effective approach invites for simplications:
- often $D_{ij}(E, \mathbf{x}) \rightarrow D(E)$, $\partial_t = 0$, etc.

э

< □ > < □ > < □ > < □ > < □ > < □ >

How to connect diffusion and GMF?

- comparison of $D_{ij}(E)$:
 - analytical calculation: only approx. & limiting cases
 - numerical calculation straight-forward
- \bullet observable: grammage $\tau_{\rm esc}({\it E}) = L^2/(2D) \propto 1/X$

3

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

How to connect diffusion and GMF?

- comparison of $D_{ij}(E)$:
 - analytical calculation: only approx. & limiting cases
 - numerical calculation straight-forward
- observable: grammage $au_{
 m esc}(E) = L^2/(2D) \propto 1/X$

3

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Our approach:

- use model for Galactic magnetic field: Jansson-Farrar, Psirkhov et al.,...
- calculate trajectories $\boldsymbol{x}(t)$ via $\boldsymbol{F}_L = q\boldsymbol{v} \times \boldsymbol{B}$.

э

A B F A B F

4 A I

Our approach:

- use model for Galactic magnetic field: Jansson-Farrar, Psirkhov et al.,...
- calculate trajectories $\boldsymbol{x}(t)$ via $\boldsymbol{F}_L = q \boldsymbol{v} \times \boldsymbol{B}$.
- as preparation, let's calculate diffusion tensor in pure, isotropic turbulent magnetic field

э

< 回 > < 三 > < 三 >

• asymptotic value is ~ 50 smaller than standard value

(4) (E) (E)

• for isotropic diffusion:

$$D = \frac{cL_0}{3} \left[(R_{\rm L}/L_0)^{2-\alpha} + (R_{\rm L}/L_0)^2 \right]$$

э

• for isotropic diffusion:

$$D = \frac{cL_0}{3} \left[(R_{\rm L}/L_0)^{1/3} + (R_{\rm L}/L_0)^2 \right]$$

for $\alpha = 5/3$

with $L_0 \simeq L_c/(2\pi)$

• for isotropic diffusion:

for
$$\alpha = 5/3$$

$$D = \frac{cL_0}{3} \left[(R_{\rm L}/L_0)^{1/3} + \dots \right] \propto B^{-1/3}$$

• for isotropic diffusion:

$$D = \frac{cL_0}{3} \left[(R_{\rm L}/L_0)^{1/3} + \dots \right] \propto B^{-1/3}$$

- which effects do we miss?
- regular field \Rightarrow anisotropic diffusion

- anisotropic turbulence
- dominance of regular field, $B_{
 m rms} = \eta B_0 \ll B_0 \ \Rightarrow \ D_{\parallel} \gg D_{\perp}$

3

< □ > < □ > < □ > < □ > < □ > < □ >

- anisotropic turbulence
- dominance of regular field, $B_{
 m rms} = \eta B_0 \ll B_0 \Rightarrow D_{\parallel} \gg D_{\perp}$

- anisotropic turbulence
- dominance of regular field, $B_{
 m rms} = \eta B_0 \ll B_0 \ \Rightarrow \ D_{\parallel} \gg D_{\perp}$
- \Rightarrow anisotropic CR propagation

- anisotropic turbulence
- dominance of regular field, $B_{\rm rms} = \eta B_0 \ll B_0 \Rightarrow D_{\parallel} \gg D_{\perp}$
- anisotropic CR propagation \Rightarrow
- $\Rightarrow D_{\parallel} \sin(2\vartheta)$ reduces grammage

э

How dominant is the regular field?

- LOFAR: $\mathit{l_{\mathrm{coh}}} \lesssim 10\,\mathrm{pc}$ in disc
- use JF12 model and rescale turbulent field
- determine magnitude of random $\boldsymbol{B}_{rms}(\boldsymbol{x})$ from grammage X(E)

э

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

How dominant is the regular field?

- LOFAR: $\mathit{l}_{\rm coh} \lesssim 10\,{\rm pc}$ in disc
- use JF12 model and rescale turbulent field
- determine magnitude of random $\boldsymbol{B}_{rms}(\boldsymbol{x})$ from grammage X(E)

How dominant is the regular field?

- LOFAR: $\mathit{l}_{\mathrm{coh}} \lesssim 10\,\mathrm{pc}$ in disc
- use JF12 model and rescale turbulent field
- determine magnitude of random $\boldsymbol{B}_{rms}(\boldsymbol{x})$ from grammage X(E)

- \Rightarrow prefers weak turbulent fields
- \Rightarrow contradiction to synchrotron intensity

C-BASS polarisation experiment at 5 GHz:

[P. Leahy '23]

< □ > < □ > < □ > < □ > < □ > < □ >

C-BASS polarisation experiment at 5 GHz: [P. Leahy '23]

C-BASS polarisation experiment at 5 GHz:

[P. Leahy '23]

High-latitude sky mask

- $b > 30^{\circ}$
- Avoids obvious structures:
 - Loop I
 - Loop III
 - Virgo A

э

(B)

C-BASS: Polarisation degree per pixel

Exp. results

C-BASS: Polarisation degree per pixel

- average polarisation $\langle P \rangle \simeq 3.3\%$, almost everyhere < 10%.
- Local Spur, fan regions: $P\sim 30\%$

C-BASS: Structure function

[P. Leahy '23]

• typical angular scale $\vartheta \simeq 15^{\circ}$

Interpretation

C-BASS: Structure function

[P. Leahy '23]

- typical angular scale $\vartheta \simeq 15^\circ$
- $\sin \vartheta / 2 \simeq D/L \simeq 1/N$

э

Interpretation

C-BASS: Structure function

[P. Leahy '23]

- typical angular scale $\vartheta \simeq 15^\circ$
- $\sin \vartheta / 2 \simeq D/L \simeq 1/N$
- $\vartheta \simeq 15^{\circ} \Rightarrow N \simeq 8$

э

★ ∃ ► < ∃ ►</p>

Interpretation

C-BASS: Structure function

[P. Leahy '23]

- typical angular scale $\vartheta \simeq 15^{\circ}$
- $\sin \vartheta / 2 \simeq D/L \simeq 1/N$
- $\vartheta \simeq 15^{\circ} \Rightarrow N \simeq 8$
- but $N\!\simeq 8$ gives $\langle P\rangle\simeq 0.7/\sqrt{N}\!\simeq 27\%$

Polarisation degree in UF24 models

• regular field B_0 from UF24 model

Polarisation degree in UF24 models

- regular field B_0 from UF24 model
- add turbulent field b such that locally RMS $b = \beta B_0$

э

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Polarisation degree in UF24 models

- regular field B_0 from UF24 model
- add turbulent field b such that locally RMS $b=\beta B_0$
- calculate *P* for various field realisations:

β	base	neCL	ехрХ	spur	cre10	synCG	twistX	nebCor
1	0.36	0.37	0.36	0.39	0.33	0.39	0.36	0.35
1.5	0.22	0.23	0.22	0.24	0.2	0.24	0.22	0.21

• agrees with $\langle P \rangle$ in Local Spur & fan regions $|b| > 30^\circ$

• small $\langle P \rangle$ would require $b \gg B_0$

(4) (日本)

TeV halos (around PWNe?)

• HAWC: slow diffusion around Geminga: $D \sim D_0/100$

э

TeV halos (around PWNe?)

- HAWC: slow diffusion around Geminga: $D \sim D_0/100$
- consistent with expectation for isotropic diffusion, $B=3\mu {\rm G}$ and $L_c=1\,{\rm pc}$

[López-Coto, Giacinti '17]

TeV halos (around PWNe?)

- HAWC: slow diffusion around Geminga: $D \sim D_0/100$
- consistent with expectation for isotropic diffusion, $B=3\mu {\rm G}$ and $L_c=1\,{\rm pc}$

• three options:

- regular field "expelled" around SNR
- self-generated turbulence close to SNR/PWNe
- typical situation in disk

Three-component model for the GMF:

add extended halo/corana field:

- disk field: small L_c & turbulent dominated such $D\simeq D_{\rm iso}\sim D_0/100$
- halo field: large L_c , dominated by regular field, $\sin(2\vartheta)D_{||}\simeq D_0$
- extended halo/corona: large L_c , turbulent field up to 200 kpc

Three-component model for the GMF:

add extended halo/corana field:

- \bullet disk field: small L_c & turbulent dominated such $D\simeq D_{\rm iso}\sim D_0/100$
- halo field: large L_c , dominated by regular field, $\sin(2\vartheta)D_{||}\simeq D_0$
- extended halo/corona: large L_c , turbulent field up to 200 kpc

simplifications:

- power law $dN/dE \sim E^{-p}$ for e^{\pm}
- profiles $B(z) \sim \exp[-(z-z_0)/z_t]$ and B_{\min}
- determine $n_e(z)$ from stationary 1d advection-diffusion equation

- 3

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Stationary 1d advection-diffusion equation

• solution for v = 0:

$$n(z) = n_0 - j_0 \int_0^z \frac{dz'}{D(z')}$$

• use $D(z) = D_0 \exp(z/z_0)$:

$$n(z) = n_0 + rac{j_0 z_0}{D_0} \left[\exp(-z/z_0) - 1 \right]$$

3

★ ∃ ► < ∃ ►</p>

Stationary 1d advection-diffusion equation

• solution for v = 0:

$$n(z) = n_0 - j_0 \int_0^z \frac{dz'}{D(z')}$$

• use $D(z) = D_0 \exp(z/z_0)$:

$$n(z) = n_0 + \frac{j_0 z_0}{D_0} \left[\exp(-z/z_0) - 1 \right]$$

• two cases:

- $j_0 z_0 / D_0 n_0 > 1$: free-escape boundary
- $j_0 z_0/D_0 n_0 < 1$: non-zero n(z) for $z \to \infty$

3

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Three-component model for the GMF: fit to synchrotron

distribution of P:

very small P requires partial cancellation of disk and halo contribution

 \bullet representative values: ${\it B}_{\rm min}=0.1\mu{\rm G}$ and ${\it n}_{\rm min}=0.1{\it n}_0$

• compatible with CR escape

Other suggestions for an extended halo

- ..., Taylor et al. '14
- Zirakashvili, Ptuskin, Rogovaya '23:

Consequences:

- additional time-delays (and deflections) for UHECRs
- diffuse photon and neutrino fluxes

э

★ ∃ ► < ∃ ►</p>

- CR escape requires fast diffusion
 - regular field should dominate in halo
 - total contribution to I subdominant
- Polarisation degree in C-Bass very low
 - large contribution to intensity from turbulent dominated region
 - region should be large $N = L/L_c \gg 1$
- Ø disk turbulent dominated
 - $N = L/L_c \simeq \text{few}$
- shape of CR sources in photons:
 - disk: spherical
 - halo: elongated

3

- CR escape requires fast diffusion
 - regular field should dominate in halo
 - total contribution to I subdominant
- Polarisation degree in C-Bass very low
 - large contribution to intensity from turbulent dominated region
 - region should be large $N = L/L_c \gg 1$
- Ø disk turbulent dominated
 - $N = L/L_c \simeq \text{few}$
- shape of CR sources in photons:
 - disk: spherical
 - halo: elongated

3

- CR escape requires fast diffusion
 - regular field should dominate in halo
 - total contribution to I subdominant
- Polarisation degree in C-Bass very low
 - large contribution to intensity from turbulent dominated region
 - region should be large $N = L/L_c \gg 1$
- I disk turbulent dominated
 - $N = L/L_c \simeq \text{few}$
- shape of CR sources in photons:
 - disk: spherical
 - halo: elongated

3

- CR escape requires fast diffusion
 - regular field should dominate in halo
 - total contribution to I subdominant
- Polarisation degree in C-Bass very low
 - large contribution to intensity from turbulent dominated region
 - region should be large $N = L/L_c \gg 1$
- Ø disk turbulent dominated
 - $N = L/L_c \simeq \text{few}$
- Shape of CR sources in photons:
 - disk: spherical
 - halo: elongated

3