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Into slide for this crowd

@ Inflation is great

e Natural / axion inflation is even greater
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Allowed couplings

A field with a shift symmetry can only couple derivatively

E/M field electrons, neutrinos, ...

. c, -
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From a EFT perspective, we expect these terms to be present.
(see Valerie's talk)
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Gauge field production

We work with an abelian gauge field (e.g. U(1)y) & decompose in
two polarizations (+, —).
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t
For non-zero coupling each polarization (+, —) exhibit different

exponential enhancement.
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Backreaction

Gauge fields source density fluctuations by back-reacting on the
inflaton through the usual axion-photon interaction
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Constraints on the coupling through:
op @ non-Gaussianity at the CMB
o @ Primordial Black Hole production
o
?
— Lattice simulations are needed to compute
strong back-reaction effects for large coupling (Dani's talk)

= — <110mp}
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Reheating Efficiency

Coupling the axion to gauge fields can lead to explosive transfer of
energy from the inflaton.

Fmp; > 45
%mpl =40
%mpl =35

PEM/ Prot

Reheating occurs after a single axion oscillation for 7mp; > 45.
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Re-Scattering and Polarization
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Strong re-scattering suppresses polarization on sub-horizon
scales for large couplings.
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Observables

Magnetic fields are observed at all scales. We focus on large scales

@ Galactic magnetic fields at kpc
scales of 107°G

Zeeman splitling
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@ Intergalactic magnetic fields with
correlation length of A
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EGMF Constraints from Simultaneous GeV-TeV Observations of
Blazars
A.M. Taylor', I. Vovk' and A. Neronov'
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Lattice Results
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Photons — Charged Plasma

Instantaneous preheating efficiently generates gauge fields, but
we are not made of gauge fields...

= The "missing link" are Standard Model interactions
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Fast interactions lead to
Treh ~ /M X mp] ~ ]_0_3 mp)

A f
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Evolution of Helical Fields

In a turbulent plasma B—fields undergo inverse cascade :

o helicity conservation
@ energy transfer from smaller to larger scales.
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Campanelli, arXiv:0705.2308

also Brandenburg & Kahniashvili

This protects magnetic fields from fast decay
— stronger magnetic fields today.
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Late Universe Magnetic Field

1074

1
e —folding number N

e Conversion of gauge fields to charged particles O(1)
o Conversion of hypercharge to EM cos 6y, ~ 0.9

@ Inverse cascade starts shortly after inflation

Bt 21071 G| & Bpuys ~107PG &  Apnys ~ 10pc
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Connection with observations
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Gauge fields and baryons

The chiral anomaly in the Standard model for a fermion species f is
fo £ i Fo ~
Outf = Cy 7 6y Y YH + CWsTyr W, W + ! 87;@” GH
Integrating this equation gives

ANf = —Cf /d4 E-B=Cl2AH
8m

where
@ ANf is the change in baryon number

o AH is the change in helicity

see Kohei's talk
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Who ordered that?
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e —folding number N e —folding number N

@ Strong back-reaction from the gauge-field traps the inflaton.
@ Inflation ends momentarily.

@ Once the gauge fields red-shift enough, inflation re-starts.
see Dani's tak
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Diverse Observables from Gauge Fields

Axion inflation naturally has a Chern-Simons coupling to U(1)
\

Lattice simulations needed for large coupling

\ Y
Instantaneous preheating & Large backreaction effects
efficient scattering to the SM = Inflaton trapping
— high reheat temperature can mimic potential feature
U Y
Largely helical magnetic fields & Possible enhanced PBH
inverse cascade production
4 Y
Possible origin of Coupling constraints must be
intergalactic magnetic fields updated
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Anatomy of single field inflation

End of inflation

V(¢) Inflation Reheating
A :

> O
/ D. Baumann, Lectures on Cosmology

Slowly rolling inflaton
wly rofling | Oscillating inflaton
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Hubble patches during inflation

During inflation the Higgs field performs
a random walk on super-horizon scales,
acquiring a different value in each Hubble patch.

(R = 036X, /*H,
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Single field inflation with a spectator

End of inflation

V(¢) Inflation Reheating
A :

/

>
/ D. Baumann, Lectures on Cosmology

Slowly rolling inflaton
wly rofling | Oscillating inflaton
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Higgs modulation

Perturbative decays to fermions
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Space-dependent reheat temperature
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Higgs blocking for gauge bosons 1/2

The effective Lagrangian is

1 1 oo e M
L= _Eaud)aud)_ V(d)) - ZF;WF# + EQﬁFM Fuy + TAI A“

where M = g|h|/2 is the gauge field mass.

The linearized equations of motion for Aj{k are

Af + HAF + k—2¢5f+/\42 AE =0
k k 22 aH k

-2.0 -15 -1.0 -0.5 0.0 0.5
e—folding number N
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Higgs blocking for gauge bosons 2/2
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mass suppressed parametric amp/f
resonance, delaying preheating B |
or even making it impossible R L L
) Nreh
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16 Gev

f(Trch) x 10

@ The Higgs & the gauge mass = *°
are stochastic variables. :

@ The reheat temperature
depends on the Higgs RMS
value.

100 @ The universe reheats into patches

o of different temperatures.

@ For incomplete preheating, the
1 PDF has a d-function-like
component at the perturbative
decay temperature.

0‘.2 013 014 015
Tren (10'° GeV)
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Preheating solely to massive gauge bosons is
observationally ruled out
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Diverse observables from the Higgs condensate

The reheat temperature depends
on the Higgs behavior during / after inflation.

o Temperature fluctuations from reheating must be bound with
respect to the CMB (Dvali, Gruzinov & Zaldarriaga, 2004)

@ Leptogenesis & Baryogenesis models must be computed using
the Higgs rms effects
= variable washout = baryon abundance =- CIB fluct.

4

Reheating effects can help us
probe the Higgs potential during inflation!
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Fermion Fields
¢ 7 M
Lme C %gbewjaﬁFm/Faﬁ + 73;@1#757 w

I

— 2B, 6 A,00As

A detailed analysis can be found in:

@ P. Adshead and EIS, Phys. Rev. Lett. 116, no. 9, 091301 (2016)
[arXiv:1508.00881 [hep-ph]]

@ P. Adshead and EIS, JCAP 1511, no. 11, 021 (2015)
[arXiv:1508.00891 [hep-ph]].
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Fermion Summary — due to time constraints

@ Coupling to fermions leads to the asymmetric production of
helicity states.

e One helicity state is produced during inflation.

e The other helicity state, which is produced only after inflation,
is produced for a smaller range of wavenumbers.

o The difference in the range of produced wavenumbers can lead
to an asymmetric production

@ The peak asymmetry has a very simple expression
An ~ (%)3 with a model-dependent O(1) factor.

@ Helicity asymmetry in SM neutrinos can be converted to an
observable baryon asymmetry through the sphaleron process.
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Inflationary Leptogenesis & Neutrinos

The observed baryon number can be connected to inflation
through generating a lepton helicity asymmetry
e Direct coupling during axion inflation:
The lepton number depends on the coupling constant and
inflaton velocity

e Gravitational leptogenesis:

Ni-r 1 _g
24 1672

op (\/ngg_L) ==

where the lepton number density is

H. ? GW
e
NBfL X <MP1> ,HRfL

while we parametrize the GW power asymmetry with

3(A% - A2 NN
HEWLE/dInk k—( R 2L)_i( R 41_)
H3 H2/M3,  He Hi/ME,
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Origin of helical GW's

U(1) gauge fields can effectively source GW's through

hj — V2hj + 2Hh; = 1675] T
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as shown through lattice simulations by Adshead, Giblin & Weiner

Evangelos Sfakianakis Magnetogenesis and beyond  30/48



Reheating and Asymmetry
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@ P. Adshead, A. J. Long and EIS, "Gravitational Leptogenesis,
Reheating, and Models of Neutrino Mass,” Phys. Rev. D 97,
no. 4, 043511 (2018) [arXiv:1711.04800 [hep-ph]].
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Reheating and Washout

@ Massive Dirac neutrinos: No net lepton number arises, BUT
the lepton number of right-handed neutrinos is sequestered
from the SM = effective (axial) SM lepton number with no
washout.

@ Massive Majorana neutrinos:

L L L I}
N/,
o "\ o | r g
[ — o ® 2
\\\\ 7’ I’ g
N + N I
[ o L SN

10° 10" 10" 102 10" 10™
Reheat Temperature: Tgry [ GeV ]
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Reheating and equation of state
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@ Matter-dominated reheating suppresses the asymmetry

@ For radiation-dominated reheating, suppresses can be avoided
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Neutrino mass and helicity sign

my < He
1015 J lJ/
—_ I Yy = -0 Yg = 107!
8 ol ‘ ] lepton asymmetry carried by the
£ PN S = 102 left-chiral leptons is efficiently
B w® \ 3 washed out,
® g = -10713 Yo = 1015
g
?u‘ Il Yp = —10714 ‘;
9] .
g ol || | ] lepton asymmetry carried by the
R N R er is eventually redistributed
1010 | assuming w =0, HEY =-10"%, & He = 10'3 GeV When the Corresponding Yukawa
10* 10° 108 10" 102 10" 10'°

interaction comes into
equilibrium.

Heavy Majorana Neutrino Mass: my [ GeV ]
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Diverse observables

GW helicity: Neutrino Mass:
CMB, LIGO == < He or my, > H
CMB, LIGO - LISA my e v e
i fr
| |
| |
4 U
Neutrino Nature: Baryon Asymmetry:
Dirac or Majorana === Gravitational Leptogenesis

@ Right-chiral GW's require Majorana neutrinos with
10% < my < 102 GeV.

@ Left-chiral GW's require Dirac neutrinos, or Majorana
neutrinos with my > 1012 GeV.
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From U(1) to GW's

Gauge field production leads to the helical GW'’s.

10-9F
oL 107 12f
=
&
c —— my =616 x 107° My, a/f = 9.6 M
—15]
10 mg = 6.16 x 1077 My, oo/ f = 10 s,\/‘;‘
me = 6.16 x 107° My, o/ f = 12.0 M,
10~ 18} —— ms =616 x 107 My, a/ f =13.0 .\/‘;‘
—— my =616 x 10710 My, o/ f = 144 M
100 107 108 10° 101

f(Hz)

However, the large frequency makes them
unobservable at interferometers.
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Hybrid Inflation

Multiple fields
I

qualitatively different behavior

Hybrid Inflation ( ):

2 slow ro|||n.g- field triggers a O (light) real timer scalar field
phase transition

= destabilizes a second field
= Inflation ends

V(¢,9) = Vo + mi? — mj [1 — (f) ] 6]

@ (heavy) complex waterfall
scalar field

Result: Large Spike at Small Scales!!
(es. )
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Timer field

d) + 3Hw _ e—2Htv2w — _miw

@ Spatially homogenous
@ purely classical
@ No back-reaction

Trivial solution for quadratic potential

¥(t) = tpcePt
ITI2 m2
wherep——H(%—\/Z—,_ff) %—371_/;

t
N

<

3
FSAN]

Non-Dimensionalize: N = Ht, juy = 4, py = 5, fiy, = —

I
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Waterfall fields

We expand the waterfall fields in non-interacting Fourier modes

oi(X, t) = / (;/jr)lz [ckJe"k'Xuk(t) + h.c.}

e—ikt/a

av 2k

where at early times ux(t) —

The power spectrum is Py(k) = |ui|? and 62, = [ <LK Py (k).

rms (27r)3
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A hybrid?> model

( An attempt to combine hybrid and natural inflation J

M?2 1 1
_ 4 P1 . R A/
S= /d xv/—g [ 5 R— E,- 5010 $i — 50,00
/ ]‘ ) ]‘ I o v
_V(U7¢I) - ZF/I//F/” -~ 7/:/1//,:/ ]

4fl_/\,-

where

2(1.\2 )2
V(0 ¢1) = Vo + Va(v) - m°(2¢') <1 R 2/2> +00*
0
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Waterfall Field Dynamics

W+ 3HY + m3p =0

Waterfall field modes grow
exponentially

10%"
Ty K 2(4 .70§10‘”
¢i +3Ho; + a2—|—m¢()¢,— @ 108
f
g 10%
where 2 10"
B o=
2 o
YRl 5 P g,
m¢(t) = —my < - 2> 10 0 5 10 15
0 Time in e-folds
t /
( ¢i()?7 t) _ d’i()?v t )effc dt' \(t') )
2
2 oM
where % o —%-1' %—i‘% (1—e 23H2t>
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Gauge field Dynamics

o koo
Peaked spectrum with “2eek ~ A __H M

aH 10H Aj min H
10%
2 1032
10
® 5
o = 102
g 10 S
= S 1012
g 10 5
©
100
102
1 10 100 1000 1 5 10 50 100 5001000
k/Ha k/Ha

Gauge field energy density pa ~ Azkgeak/a“,
where A is the amplification factor.

Complete preheating requires pina >~ pa, leading to

A~ () ()
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GW signals

A simple way to estimate GW production ( )
VRK = 2.7 x 10" ——"— Hz,

v Mp H

k H,\ 2
peak 2 1074 2 Ky )
Qow 3x107%a" g (O’)(k*>

«: fraction of the energy in the GW source relative to the
Universe's total energy density

(B:encodes the anisotropy of the source
of the universe
k.: peak wavenumber of the source spectrum

o: width of the source spectrum
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Signals and experiments
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10°r s ET
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Primordial Black Holes & Parameter Dependence

The density perturbations spike leads to the formation of
PBH's with | M = (M2,/H.)e>™" | and probability

_ e\ o V20 _00
Prn(M) = erfe <ﬂa> RN

LH/Mey | mo [ A/H | Nor | w8 | Q8w [ Men
1070 [ 6H [ 108 [ 142 | 100Hz [ 10 '] 107°M,
10729 [ 154 | 108 | 6.2 | 100Hz | 10 'O [ 107 B3M,
1072* | 7H [ 102 | 14 1Hz [ 10 9| 0.1M,
10739 [ 8H [ 10*" [ 145 [ 10 °Hz | 10 U | 10°M,
10739 [12H[10*" | 10 [10°Hz | 107 | 10Mg
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A rare way to probe low-scale inflation

@ A simple model leading to detectable GW signals from
preheating, using axions and dark photons in a hybrid
inflation setup

@ Helical GW'’s provide a distinguishing feature

@ Associated PBH production provides more correlated
observables
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A simple model of inflation leads to rich phenomenology

@ Magnetic fields

o GWs

Large over-densities and PBHs (?7)

Baryogenesis and neutrino physics

CIB fluctutations and Higgs physics

oscillons

Evangelos Sfakianakis Magnetogenesis and beyond  47/48



Thank you!

(Questions
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