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Introduction to the adiabatic Renormalization

e UV divergences: As in the case of flat space time, observable are
characterized by divergences in the deep UV.

e New divergences: The presence of gravity led to new divergences
that are not matched by the Minkowski ones.

@ Vacuum choice: There is not a preferred choice of the vacuum.



Minimal energy vacuum at time g
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At t > to non trivial (gravity) background mixes positives and negatives
modes:

9(x) = awf(z) + Brf* (z) , o = Bil =1
the field can be represented as a new combination of mode functions
such that:

P(x) = Z{Bxgk(x) +Blgi(2)}, A =By + 3B,
K

the "vacuum"-state is not anymore empty

(0] Af AL [0) # 0= Ny, = ||



Physical request:
particles should not be created when the energy of a single particle is
larger w.r.t. the energy scale of the spacetime.
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a?(t) a a
the particle content should not change if the change rate of a(t) is
adiabatic.

Adiabatic vacuum:
the vacuum that minimizes the creation of particle due to the
presence of a time-dependent metric.




Scalar Field

L= 5 (¢ 0,00,0 — m*6” — ER?)

Friedmann-Lemaitre-Robertson-Walker (FLRW) metric

ds? = dt? — a?(t) dx?

Equation of motion: (O+m?+&R) ¢ =0
standard quantization: ¢(x) = Z{Akfk(x) + Aifﬁ(a:)}
K

AIT( and Ay creation and annihilation operators

mode function: fi. = (2V) "/ 2a(t) 73/ 2hy (t)ek>



the rescaled mode function hy(t) satisfies the equation
ka + Qi(t) h,=0
formally solved by the Wentzel-Kramer-Brillouin (WKB) approximation

hk;(t) _ e*ifwk(t/)dt/
2Wk(t)

inserting the WKB ansatz into the equation of motion
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Adiabatic condition: slowly changes in time
0%
7] <1
introducing an adiabatic parameter € < 1
Oy — €0
solution for W, (t) as a power series in time derivatives

Wi(t) = W,go)(t)JreW,g”(t) Lgen W]in)(t)



Adiabatic renormalization prescription:

@ evaluate expectation values w.r.t. the adiabatic vacuum
@ mode functions are given in terms of WKB ansatz.

@ expand up to the adiabatic order that matches divergence of the
operator.

@ subtract the adiabatic term from the bare quantity.



A problematic example: Axion-gauge fields

Pseudo-scalar inflaton field ¢ coupled to U(1) gauge field A,
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@ Due to the coupling with the inflaton field ¢, quantum fluctuations
of the gauge field A, are amplified.

$+3H$+Vy=g(E-B)
1 | ¢? E? + B?
@ Backreaction: H? = 32 | 2 + V() + %
: 1 2 2,0 2}
H=— —(E B
PIVE [0+ S8+ 1)

A
L[ (B2 4 B?%) dkk? /2 12 42 2 2
Energy Density — = @n2a()t [|A+| +IAL]F +E (\A+| +|A_| )}

A T
Helicity Integral (E-B) = 7/ %g (14412 — A1)
™)“al(T T




The fourier mode functions A4 satisfy the EOM:
d2
@Aﬂ: (Ta k) + (k2 :F kg¢/> A:I: (T7 k) = O

assuming de Sitter: a(r) = —1/(HT), H = const.

€ =g¢'/(2a(T)H) = gd/(2H)  |Asr(r,k) = m*“wwﬂw 2ikr)

e Divergences: @ O A* A% logA,
(E-B) D> A2, logA
e A% A? and log[A] UV divergences for the energy density.
e A2 and log[A] UV divergences for the helicity integral.

@ well-behaved in the infrared




Renormalization

1
For each polarization A = +: |  AVKB(k, 1) =
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Q2 (k1) = B2 (ky 7) + 2 (QA(’”)) ~ ;m

e Adiabatic condition: slowly changes in time: %
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Standard adiabatic regularization: ill defined for m — (

a(T)
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@ The standard adiabat

ic renormalization correctly removes the

divergences in the UV, introducing unphysical IR divergences.




Issues and Motivations: the need of a IR cut off

@ Adiabatic renormalization concerns the UV divergences
o WKB is well defined for modes that feel small curvature

@ Good approximation for sub-horizon modes



(Tyw)ad will have the following general structure:

w5 e ()

o deep UV:when A — oo, the higher order terms go to zero and we
can truncate the series at the fourth adiabatic order, which is indeed
the order needed to remove the UV divergences.

@ IR regime the IR regime produces higher order terms involving m
which are increasingly relevant for m — 0.



New adiabatic regularization

We suggest that the procedure of adiabatic regularization should be

always performed on a proper domain which excludes the IR tail of the
spectrum.

@ the adiabatic subtraction should be considered only up to a
comoving IR cut-off ¢ = Ba(t)H(t).

@ the coefficient 3, should be determined by a proper physical
prescription.
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How to fix the scheme
Conformal anomaly

e In the conformal limit, a proper renormalization scheme should
provide the conformal anomaly induced by quantum effects.

e When at the classical level 7" = 0

(T*dohys = = (T, )reg

where (T ). is the trace contribution to the energy-momentum
tensor given by the particular renormalization method applied.



@ The two helicities of the mode functions A4 are equivalent to two
conformally coupled massless scalar fields for £ =0

d2 2k 2 d?
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this term should reproduce the expected value of the anomaly
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Comparison between the new adiabatic scheme and the minimal
subtraction scheme (MS).

@ This is a physically motivated prescription that is able to fix
univocally the renormalization scheme.

@ We are able to obtain finite results for the averaged energy density
and helicity of gauge fields.
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® First order perturbation gauge fields : | A(t,z) = AM (¢, x)
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Perturbed metric around a FLRW:

goo = —1 — 2a — 20
gio = —75 (5 + B;) - ( +B(2))

gi; = a® [@j (1-26-20®) + Dy (E+ E)
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Einstein tensor: G* = G*O) 4 5GP 4 5Gr3)
Energy-momentum tensor: T = TH© 4 §T#1) 4 712



@ First order perturbations are decoupled
@ Second order in uniform curvature gauge (UCG) (v =E =0)

Scalar sector
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A physical gauge invariant observable is can be defined as
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o Natural observer (2 = 0 to fix z

o _ (1 Oaeys 2 o)
Ha= (22 ) w1+ 2o - 2]

@ back to the uniform curvature gauge (UCG) in the long wavelength
limit
- H
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at leading order in slow-roll
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Summary

Adiabatic renormalization is a powerful renormalization scheme to
regularize UV divergences.

Should be truncated up to an IR cut-off proportional to the horizon
size.

This cut-off should be fixed by a proper physical prescription.

Work in progress: taking into account metric perturbations can have
a non trivial impact on the backreaction.
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