On adiabatic renormalization and Gauge invariant backreaction in U(1)-axion inflation

Pietro Conzinu

Generation, evolution, and observations of cosmological magnetic fields
Bernoulli Center, Lausanne, 10.05.2024

Outline

Adiabatic Renormalization

C. Animali, P.C, G. Marozzi JCAP 05, 026 (2022), arXiv:2201.05602

Gauge Invariant Backreaction

D. Campanella Galanti, P.C, G. Marozzi, S. Santos da Costa Work in progress

Adiabatic Renormalization

C. Animali, P.C, G. Marozzi JCAP 05, 026 (2022), arXiv:2201.05602

Gauge Invariant Backreaction

D. Campanella Galanti, P.C, G. Marozzi, S. Santos da Costa Work in progress

Introduction to the adiabatic Renormalization

- **UV divergences:** As in the case of flat space time, observable are characterized by divergences in the deep UV.
- **New divergences:** The presence of gravity led to new divergences that are not matched by the Minkowski ones.
- Vacuum choice: There is not a preferred choice of the vacuum.

Minimal energy vacuum at time t_0

$$\phi(x) = \sum_{k} \{ \mathbf{A}_k f_k(x) + \mathbf{A}_k^{\dagger} f_k^*(x) \}, \qquad \mathbf{A}_k |0\rangle = 0$$

At $t>t_0$ non trivial (gravity) background mixes positives and negatives modes:

$$g(x) = \alpha_k f(x) + \beta_k f^*(x)$$
, $|\alpha_k^2 - \beta_k^2| = 1$

the field can be represented as a new combination of mode functions such that:

$$\phi(x) = \sum_{k} \{ \mathbf{B}_{x} g_{k}(x) + \mathbf{B}_{k}^{\dagger} g_{k}^{*}(x) \}, \qquad \mathbf{A}_{k} = \alpha_{k} \mathbf{B}_{k} + \beta_{k} \mathbf{B}_{-k}^{\dagger}$$

the "vacuum"-state is not anymore empty

$$\langle 0 | \mathbf{A}_k^{\dagger} \mathbf{A}_k | 0 \rangle \neq 0 = N_k = |\beta_k|^2$$

Physical request:

particles should not be created when the energy of a single particle is larger w.r.t. the energy scale of the spacetime.

$$\frac{k^2}{a^2(t)} + m^2 > \left(\frac{\dot{a}}{a}\right)^2, \ \frac{\ddot{a}}{a} \qquad \Rightarrow N_k \sim \text{const.}$$

the particle content should not change if the change rate of $\boldsymbol{a}(t)$ is adiabatic.

Adiabatic vacuum:

the vacuum that minimizes the creation of particle due to the presence of a time-dependent metric.

Scalar Field

$$\mathcal{L} = \frac{1}{2} \left(g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi - m^2 \phi^2 - \xi R \phi^2 \right)$$

Friedmann-Lemaître-Robertson-Walker (FLRW) metric

$$\mathrm{d}s^2 = \mathrm{d}t^2 - a^2(t)\,\mathrm{d}\mathbf{x}^2$$

Equation of motion:
$$\left(\Box + m^2 + \xi R\right)\phi = 0$$
 standard quantization:
$$\phi(x) = \sum_{\mathbf{k}} \{A_{\mathbf{k}} f_{\mathbf{k}}(x) + A_{\mathbf{k}}^\dagger f_{\mathbf{k}}^*(x)\}$$

 $A_{\mathbf{k}}^{\dagger}$ and $A_{\mathbf{k}}$ creation and annihilation operators

mode function:
$$f_{\mathbf{k}} = (2V)^{-1/2}a(t)^{-3/2}h_k(t)e^{i\mathbf{k}\cdot\mathbf{x}}$$

the rescaled mode function $h_k(t)$ satisfies the equation

$$\ddot{h}_k + \Omega_k^2(t) h_k = 0$$

formally solved by the Wentzel-Kramer-Brillouin (WKB) approximation

$$h_k(t) = \frac{1}{\sqrt{2W_k(t)}} e^{-i\int W_k(t')dt'}$$

inserting the WKB ansatz into the equation of motion

$$W_k(t)^2 = \Omega_k(t)^2 - \left(\frac{\ddot{W}_k(t)}{2W_k(t)} - \frac{3\dot{W}_k(t)^2}{4W_k(t)^2}\right)$$

Adiabatic condition: slowly changes in time

$$\left|\frac{\dot{W}}{W^2}\right| \ll 1$$

introducing an adiabatic parameter $\epsilon \ll 1$

$$\partial_t \to \epsilon \partial_t$$

solution for $W_k(t)$ as a power series in time derivatives

$$W_k(t) = W_k^{(0)}(t) + \epsilon W_k^{(1)}(t) + \dots + \epsilon^n W_k^{(n)}(t)$$

Adiabatic renormalization prescription:

- evaluate expectation values w.r.t. the adiabatic vacuum
- mode functions are given in terms of WKB ansatz.
- expand up to the adiabatic order that matches divergence of the operator.
- subtract the adiabatic term from the bare quantity.

A problematic example: Axion-gauge fields

Pseudo-scalar inflaton field ϕ coupled to U(1) gauge field A_{μ}

$$\mathcal{L} = -\frac{1}{2} (\nabla \phi)^2 - V(\phi) - \frac{1}{4} (F^{\mu\nu})^2 - \frac{g\phi}{4} F^{\mu\nu} \tilde{F}_{\mu\nu}$$

• Due to the coupling with the inflaton field ϕ , quantum fluctuations of the gauge field A_{μ} are amplified.

$$\ddot{\phi} + 3H\dot{\phi} + V_{\phi} = g \langle \mathbf{E} \cdot \mathbf{B} \rangle$$

$$H^{2} = \frac{1}{3M_{p}^{2}} \left[\frac{\dot{\phi}^{2}}{2} + V(\phi) + \frac{\langle \mathbf{E}^{2} + \mathbf{B}^{2} \rangle}{2} \right]$$

$$\dot{H} = -\frac{1}{2M_{p}^{2}} \left[\dot{\phi}^{2} + \frac{2}{3} \langle \mathbf{E}^{2} + \mathbf{B}^{2} \rangle \right]$$

Backreaction:

Energy Density
$$\left| \frac{\langle \mathbf{E}^2 + \mathbf{B}^2 \rangle}{2} \right| = \int^{\Lambda} \frac{\mathrm{d}k k^2}{(2\pi)^2 a(\tau)^4} \left[|A'_+|^2 + |A'_-|^2 + k^2 \left(|A_+|^2 + |A_-|^2 \right) \right]$$

Helicity Integral

$$\left| \langle \mathbf{E} \cdot \mathbf{B} \rangle = -\int_{-\infty}^{\Lambda} \frac{\mathrm{d}k k^3}{(2\pi)^2 a(\tau)^4} \frac{\partial}{\partial \tau} \left(|A_+|^2 - |A_-|^2 \right) \right|$$

The fourier mode functions A_{\pm} satisfy the EOM:

$$\frac{\mathrm{d}^2}{\mathrm{d}\tau^2} A_{\pm}(\tau, k) + \left(k^2 \mp kg\phi'\right) A_{\pm}(\tau, k) = 0$$

assuming de Sitter: $a(\tau) = -1/(H\tau), \ H = {\rm const.}$

$$\xi \equiv g\phi'/(2a(\tau)H) = g\dot{\phi}/(2H)$$
 $A_{\pm}(\tau,k) = \frac{1}{\sqrt{2k}}e^{\pm \pi\xi/2}W_{\pm i\xi,\frac{1}{2}}(-2ik\tau)$

• Divergences:
$$\frac{\langle \mathbf{E}^2 + \mathbf{B}^2 \rangle}{2} \supset \Lambda^4, \, \Lambda^2, \log \Lambda, \\ \langle \mathbf{E} \cdot \mathbf{B} \rangle \supset \Lambda^2, \, \log \Lambda$$

- Λ^4 , Λ^2 and $\log[\Lambda]$ UV divergences for the energy density.
- ullet Λ^2 and $\log[\Lambda]$ UV divergences for the helicity integral.
- well-behaved in the infrared

Renormalization

For each polarization
$$\lambda=\pm$$
:
$$A_{\lambda}^{\text{WKB}}(k,\tau)=\frac{1}{\sqrt{2\Omega_{\lambda}(k,\tau)}}e^{-i\int\Omega_{\lambda}(k,\tau')\mathrm{d}\tau'}$$

$$\begin{split} \frac{\mathrm{d}^2}{\mathrm{d}\tau^2} A_{\pm}^{\mathrm{WKB}}(\tau,k) + \left(k^2 \mp gk\phi' + \frac{m^2}{H^2\tau^2}\right) A_{\pm}^{\mathrm{WKB}}(\tau,k) = 0 \\ & \qquad \qquad \downarrow \end{split}$$

$$\Omega_{\lambda}^{2}(k,\tau) = \bar{\Omega}_{\lambda}^{2}(k,\tau) + \frac{3}{4} \left(\frac{\Omega_{\lambda}'(k,\tau)}{\Omega_{\lambda}(k,\tau)} \right)^{2} - \frac{1}{2} \frac{\Omega_{\lambda}''(k,\tau)}{\Omega_{\lambda}(k,\tau)}$$

Adiabatic condition: slowly changes in time: $\left|\frac{\dot{\Omega}}{\Omega^2}\right| \ll 1$

$$\epsilon \ll 1: \partial_t \to \epsilon \partial_t$$

$$\Omega_k(t) = \Omega_k^{(0)}(t) + \epsilon \Omega_k^{(1)}(t) + \dots + \epsilon^n \Omega_k^{(n)}(t)$$

Standard adiabatic regularization: ill defined for $m \to 0$

$$\boxed{ \frac{1}{2} \langle \mathbf{E}^2 + \mathbf{B}^2 \rangle_{\mathsf{ad}} = \int_0^{a(\tau)\Lambda} \frac{\mathrm{d}k k^2}{(2\pi)^2 a(\tau)^4} (\cdots)_{\mathsf{ad}}^{n=4} \supset \Lambda^4, \Lambda^2, \log \Lambda, \log m \\ \langle \mathbf{E} \cdot \mathbf{B} \rangle_{\mathsf{ad}} = -\int_0^{a(\tau)\Lambda} \frac{\mathrm{d}k k^3}{(2\pi)^2 a(\tau)^4} \frac{\partial}{\partial \tau} (\cdots)_{\mathsf{ad}}^{n=4} \supset \Lambda^2, \log \Lambda, \log m }$$

 The standard adiabatic renormalization correctly removes the divergences in the UV, introducing unphysical IR divergences.

Issues and Motivations: the need of a IR cut off

- Adiabatic renormalization concerns the UV divergences
- WKB is well defined for modes that feel small curvature
- Good approximation for sub-horizon modes

 $\langle T_{\mu\nu} \rangle_{ad}$ will have the following general structure:

$$\langle T \rangle_{\mathrm{ad}}^{(n>4)} = H^4 \sum_{n>4} \left(c_n \left(\frac{H}{m} \right)^{n-4} + c_n' \left(\frac{H}{\Lambda} \right)^{n-4} \right)$$

- **deep UV**:when $\Lambda \to \infty$, the higher order terms go to zero and we can truncate the series at the fourth adiabatic order, which is indeed the order needed to remove the UV divergences.
- IR regime the IR regime produces higher order terms involving m which are increasingly relevant for $m \to 0$.

New adiabatic regularization

We suggest that the procedure of adiabatic regularization should be always performed on a proper domain which excludes the IR tail of the spectrum.

- the adiabatic subtraction should be considered only up to a comoving IR cut-off $c=\beta a(t)H(t)$.
- ullet the coefficient eta, should be determined by a proper physical prescription.

$$\frac{1}{2} \langle \mathbf{E}^2 + \mathbf{B}^2 \rangle_{\mathsf{ad}} = \int_{\beta a(\tau)H}^{a(\tau)\Lambda} \frac{\mathrm{d}k k^2}{(2\pi)^2 a(\tau)^4} (\cdots)_{\mathsf{ad}}^{n=4}$$
$$\langle \mathbf{E} \cdot \mathbf{B} \rangle_{\mathsf{ad}} = -\int_{\beta a(\tau)H}^{a(\tau)\Lambda} \frac{\mathrm{d}k k^3}{(2\pi)^2 a(\tau)^4} \frac{\partial}{\partial \tau} (\cdots)_{\mathsf{ad}}^{n=4}$$

$$\begin{split} \frac{1}{2} \left\langle \mathbf{E}^2 + \mathbf{B}^2 \right\rangle_{\text{ad}}^{c=\beta Ha(\tau)} &= \frac{\Lambda^4}{8\pi^2} + \frac{H^2 \Lambda^2 \xi^2}{8\pi^2} + \frac{3H^4 \xi^2 (5\xi^2 - 1) \log{(2\Lambda/H)}}{16\pi^2} \\ &\qquad - \frac{\beta^4 H^4}{8\pi^2} - \frac{\beta^2 H^4 \xi^2}{8\pi^2} - \frac{3H^4 \xi^2 (5\xi^2 - 1) \log{(2\beta)}}{16\pi^2} \\ \left\langle \mathbf{E} \cdot \mathbf{B} \right\rangle_{\text{ad}}^{c=\beta Ha(\tau)} &= -\frac{H^2 \Lambda^2 \xi}{8\pi^2} - \frac{3H^4 \xi (5\xi^2 - 1) \log{(2\Lambda/H)}}{8\pi^2} \\ &\qquad + \frac{\beta^2 H^4 \xi}{8\pi^2} + \frac{3H^4 \xi (5\xi^2 - 1) \log{(2\beta)}}{8\pi^2} \end{split}$$

How to fix the scheme Conformal anomaly

- In the conformal limit, a proper renormalization scheme should provide the conformal anomaly induced by quantum effects.
- ullet When at the classical level $T^{\mu}_{\ \ \mu}=0$

$$\langle T^{\mu}_{\mu}\rangle_{\rm phys} = -\langle T^{\mu}_{\mu}\rangle_{\rm reg}$$

where $\langle T^{\mu}_{\ \mu} \rangle_{\rm reg}$ is the trace contribution to the energy-momentum tensor given by the particular renormalization method applied.

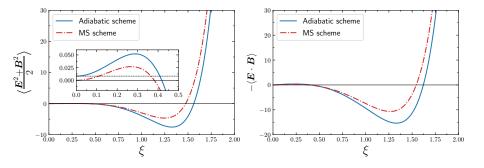
• The two helicities of the mode functions A_{\pm} are equivalent to two conformally coupled massless scalar fields for $\xi=0$

$$\frac{\mathrm{d}^2}{\mathrm{d}\tau^2} A_{\pm} + \left(k^2 \pm \frac{2k\xi}{\tau} + \frac{m^2}{H^2\tau^2} \right) A_{\pm} = 0 \to \left[\left(\frac{\mathrm{d}^2}{\mathrm{d}\tau^2} + k^2 \right) A_{\pm} = 0 \right]$$

$$\lim_{\xi \to 0, \, m \to 0} \langle \boldsymbol{T}^0_0 \rangle_{\mathrm{ad}} = \lim_{\xi \to 0, \, m \to 0} \frac{\langle \mathbf{E}^2 + \mathbf{B}^2 \rangle_{\mathrm{ad}}^{c = \beta Ha(\tau)}}{2} = -\frac{\beta^4 H^4}{8\pi^2}$$

this term should reproduce the expected value of the anomaly

$$\frac{\beta^4 H^4}{8\pi^2} = \frac{H^4}{480\pi^2} \implies \left| \beta = \frac{1}{\sqrt{2} \times 15^{1/4}} \approx 0.359 \right|$$



Comparison between the new adiabatic scheme and the minimal subtraction scheme (MS).

- This is a physically motivated prescription that is able to fix univocally the renormalization scheme.
- We are able to obtain finite results for the averaged energy density and helicity of gauge fields.

Adiabatic Renormalization

C. Animali, P.C, G. Marozzi JCAP 05, 026 (2022), arXiv:2201.05602

Gauge Invariant Backreaction

D. Campanella Galanti, P.C, G. Marozzi, S. Santos da Costa Work in progress

$$lacktriangle$$
 First order perturbation gauge fields : $A(t,x) = A^{(1)}(t,\mathbf{x})$

$$\mathcal{L} = -\frac{1}{2}\partial_{\mu}\phi\partial^{\mu}\phi - V(\phi) - \frac{1}{4}F_{\mu\nu}F^{\mu\nu} - \frac{g\phi}{4}F^{\mu\nu}\tilde{F}_{\mu\nu},$$

 $\phi(t, \mathbf{x}) = \phi^{(0)}(t) + \varphi(t, \mathbf{x}) + \varphi^{(2)}(t, \mathbf{x})$ $g_{\mu\nu}(t, \mathbf{x}) = g_{\mu\nu}^{(0)}(t) + \delta g_{\mu\nu}^{(1)}(t, \mathbf{x}) + \delta g_{\mu\nu}^{(2)}(t, \mathbf{x})$

Perturbed metric around a FLRW:

$$g_{00} = -1 - 2\alpha - 2\alpha^{(2)}$$

$$g_{i0} = -\frac{a}{2}(\beta_{,i} + B_i) - \frac{a}{2}(\beta_{,i}^{(2)} + B_i^{(2)})$$

$$g_{ij} = a^2 \left[\delta_{ij} \left(1 - 2\psi - 2\psi^{(2)} \right) + D_{ij} \left(E + E^{(2)} \right) + \frac{1}{2} (\chi_{i,j} + \chi_{j,i} + h_{ij}) + \frac{1}{2} \left(\chi_{i,j}^{(2)} + \chi_{j,i}^{(2)} + h_{ij}^{(2)} \right) \right]$$

$$G_{\nu}^{\mu} = 8\pi G T_{\nu}^{\mu}$$

Einstein tensor:
$$G^\mu_\nu=G^{\mu(0)}_\nu+\delta G^{\mu(1)}_\nu+\delta G^{\mu(2)}_\nu$$
 Energy-momentum tensor: $T^\mu_\nu=T^{\mu(0)}_\nu+\delta T^{\mu(1)}_\nu+\delta T^{\mu(2)}_\nu$

- First order perturbations are decoupled
- ullet Second order in uniform curvature gauge (UCG) ($\psi=E=0$)

Scalar sector

$$\alpha^{(2)} = 4\pi G \frac{\phi}{H} \varphi^{(2)} + s + \Gamma$$

$$\frac{H}{a} \nabla^2 \beta^{(2)} = 8\pi G \frac{\dot{\phi}^2}{H} \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{H}{\dot{\phi}} \varphi^{(2)} \right) - (Q + \Sigma) + 16\pi G V (s + \Gamma)$$

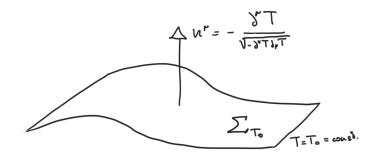
$$\ddot{\varphi}^{(2)} + 3H\dot{\varphi}^{(2)} - \frac{\nabla^2 \varphi^{(2)}}{a^2} + \left[V_{\phi\phi} + 2\frac{\dot{H}}{H} \left(3H - \frac{\dot{H}}{H} + 2\frac{\ddot{\phi}}{\dot{\phi}} \right) \right] \varphi^{(2)} = D$$

where

$$s\supset (\varphi,\,\alpha,\beta)\;,\quad Q\supset \varphi,(\alpha,\beta),\quad (\Gamma,\,\Sigma)\supset (E,\,\mathbf{B})\;,\quad D\supset (\mathbf{E},\,\mathbf{B},\,,\varphi\,,\,\alpha,\beta)$$

A physical gauge invariant observable is can be defined as

$$\langle S \rangle_{T_0} = \frac{\langle \sqrt{|\overline{\gamma}(t_0, \mathbf{x})|} \ \overline{S}(t_0, \mathbf{x}) \rangle}{\langle \sqrt{|\overline{\gamma}(t_0, \mathbf{x})|} \rangle}$$
$$\bar{x}^{\mu} = (\bar{t}, \mathbf{x}) : T(\bar{x}^{\mu}) = T(\bar{t}), T_0 = T(\bar{t} = t_0)$$



$$\Theta = \nabla_{\mu} n^{\mu} \qquad \qquad \left| H_{\rm eff}^2 \equiv \left(\frac{1}{a_{eff}} \frac{\partial a_{eff}}{\partial T_0} \right)^2 = \frac{1}{9} \left\langle \frac{\Theta}{\sqrt{-\partial^{\mu} T \partial_{\mu} T}} \right\rangle_{T_0}^2 \right|$$

G. Marozzi, M. Gasperini and G. Veneziano, JCAP 03, 011 (2009), arXiv:0901.1303

G. Marozzi, M. Gasperini and G. Veneziano, JCAP 02, 009 (2010), arXiv:0912.3244

• Natural observer $\bar{\varphi}^{(2)} = 0$ to fix \bar{x}

$$H_{\rm eff}^2 = \left(\frac{1}{a_{eff}}\frac{\partial a_{eff}}{\partial A_0}\right)^2 = H^2 \left[1 + \frac{2}{H} \langle \bar{\psi}\dot{\bar{\psi}}\rangle - \frac{2}{H} \langle \dot{\bar{\psi}}^{(2)}\rangle \right].$$

 back to the uniform curvature gauge (UCG) in the long wavelength limit

$$\bar{\psi}^{(2)} = \frac{H}{\dot{\phi}} \varphi^{(2)}$$

$$H_{\rm eff}^2 = \simeq H^2 \left[1 - \frac{2}{\dot{\phi}} \left(\frac{\dot{H}}{H} \langle \varphi^{(2)} \rangle + \langle \dot{\varphi}^{(2)} \rangle \right) \right]$$

at leading order in slow-roll

$$\boxed{H_{\mathsf{eff}}^2 \sim H^2 \left[1 + \frac{1}{3H^2} \left(\frac{\langle \mathbf{E}^2 + \mathbf{B}^2 \rangle}{2} - \frac{g^2}{\xi} \langle \mathbf{E} \cdot \mathbf{B} \rangle \right) \right]}$$

Summary

- Adiabatic renormalization is a powerful renormalization scheme to regularize UV divergences.
- Should be truncated up to an IR cut-off proportional to the horizon size.
- This cut-off should be fixed by a proper physical prescription.
- Work in progress: taking into account metric perturbations can have a non trivial impact on the backreaction.

Thank you for the attention