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Cusp anomalous dimension

controls the infrared behavior of perturbative QCD scattering amplitudes
simplest soft anomalous dimension in QCD

an essential ingredient of all calculations of soft anomalous dimensions for
processes with more complicated color structures

Wilson or eikonal lines - ordered exponentials

the path is a straight line in the direction of the parton four-velocity v

A2
W(Ag, A\1;2) = Pexp (—ig/ d\ v-A(Av + x))
A

1

cusp angle 0 = cosh™!(v1 - va/4/v?02)

v1 -v2 =1+ 8% and v% = v% = 1 — 52, where 8 = \/1 — 4m? /s is the quark speed
Thus, 6 = In[(1+ B8)/(1 — B)] and 8 = tanh(6/2)

range 0 < 0 < oo corresponds to 0 < 3 < 1
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Eikonal approximation
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with p x v

The cusp anomalous dimension at each order can be read off the coefficients

of the ultraviolet poles of the corresponding eikonal loop diagrams
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Perturbative series for I'c,gp

P = 30 (%)

n=1

One-loop cusp anomalous dimension [Polyakov 1980]

Y = Cp(fcothf —1)

L <<

Noting that cothd = (1 + 32)/(283), we define

- ()

Then, the one-loop cusp anomalous dimension written as a function of 3 is
r = —Cp (Lg+1)
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At two loops, first attempt [Knauss and Scharnhorst 1984]
in terms of double and triple integrals

later two-loop result [Korchemsky and Radyushkin 1986]
in terms of three unevaluated single integrals

Fully analytical result at two loops [NK 2009] derived independently

in terms of § and also reexpressed in terms of 6
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Two-loop cusp anomalous dimension [NK 2009]

1-5
r® = Kor® 4 C{ +<—2+—1 (—>
2 CrpCy 1+ 5

N (11_—552) {@ " (%) 2 (%) + %lrﬁ (%) — Lio ((1 j—ﬁﬁ)Q

n (1 2562)2 {—CB — (o ln (%) — %1]03 (%)

-8\, (=82 .. (-8
‘ln(?>L ((1 >)+L1‘°’(<1+5>2>”

where Ko = C'4(67/36 — (2/2) — 5n /18

In terms of 6§ [NK 2009]

1
r = K2F<1>+CFCA{ +<—2+?—§cothe

93
(20 + 6% + — +Liz (1- 6_29)]

1
4 5 coth? 0

—(3 + G20 + § + 6 Lio (6_26) + Lis (6_29)] }
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Three-loop cusp anomalous dimension [Grozin, Henn, Korchemsky, Marquard 2015]

some representative diagrams

Further study and reexpressions in [NK 2016, 2023]

r® = KM 19K, (F(2) _ K2F(1)) + ®)

where K3 and C(®) have long expressions
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Large 0 and 8 asymptotics of I'c,qp

Large-0 behavior of I'cysp

lim T'™) = A(™) 1im 9+ R,

60— 0 60— oo

where A(") = Cr K, is the lightlike cusp anomalous dimension
and known through four loops

Large-5 behavior of I'cusp

1 _
lim '™ = K, lim TM + P, = —CrK,, lim In (—5> + R,
B—1 B—1 B—1 2

where R, = P, — CrK,, and the constants P, at one, two, and three loops
are given by

P =0,
P> =(1/2)CpCa(1 —(3),
and
_ 2 CB
P3 = KoCpC (1 —(3) +CrCyh (—— + C2 —— + C5 — —C2C3>
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Small § and 0 asymptotics of I'c,p

Small-3 expansion of I'cysp through four loops

rm =) + 10 + 0(8°%)

and we find at one loop

1y _ 4 2 1 _ 8 4

and at two loops

94 4 20
F(2):2{CC (——— )——C T}
g2 =P FCa (52 3C2 57 CrnyTr

(2) 4 64 8 ) 8 ]
r® — g4 | CpCa (= - 2¢) = = CpnsT
B { rCa (45 15(2 5> CrnsTr

longer expressions at three loops [NK 2016, 2023]

recently derived at four loops in [NK 2023]
based on the small-0 expansions in [Grozin, Lee, Pikelner 2022]

r =1l 4 i)+ 09°)

using 0 = 28 + (2/3)83 + O(B°)
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Approximate expression for I'.,s, from asymptotics

Expressions for I'cysp from asymptotics at two loops [NK 2009],
three loops [NK 2016], and four loops [NK 2023]

start with the small-3 expansion of I'cysp, with I‘(BT;)A — F(Bg) 4+ F(ﬂz),

then add K, ') and subtract its small-3 expansion

P =T — Ka T, + Kn T

The last two terms on the right cancel against each other at small 3

The first two terms on the right cancel against each other at large (3

4 8
Equivalently, ri) = Fg;?él — CrKn (§ B2+ = B+ Lg + 1)

The approximation works due to the small range of 3
It does not work using 6 expansions due to the infinite range of 0

Of course, the approximate results in 5 can later be reexpressed in terms of 0

N. Kidonakis. Loopfest 202/4. Dallas. TX. Mauy 202/

10



()
(2)
FA

3
N

(@)

Approximate expression for I'.,s, from asymptotics

Results at each perturbative order through four loops
)
—0.386490845 32 — 0.036077819 8% + (3.115932233 — 0.277777778 ns) 'V

(—0.981370903 + 0.214717136 ns) 8% + (—0.141381392 + 0.020043233 n s ) B*
+ (13.76833912 — 2.146727700 s — 0.009259259 n%) ')

(—3.749290323 4 1.186688634 ny — 0.022664587 %) 5~

+ (—0.290594150 + 0.156331101 ny — 0.002115675n%) 8*
+(60.65142489 — 15.15209803 15 + 0.572980154 n% + 0.009586947 n’}) (D)
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three alternative ways to plot the result

1
0 = 1n (Lﬁ)
1-p
B8 = 0 corresponds to § = 0 while 8 = 0.99999 corresponds to 6 ~ 12.2
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Ratios to exact results for n.= 3
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The difference between I’Ef) and I'® is less than 1 per mille over the entire 3 range
from O to 1. It is less than one part per million from 3 = 0 up to g = 0.17; and better
than 0.1 per mille for 3 =0 to 8 =~ 0.6, and = 0.8 to 8 = 0.9, and for g ~ 1.

The difference between I’Ef) and I'® is well below 1 per mille everywhere. It is less

than one part per million from 3 =0 to 8 = 0.16; and better than 0.1 per mille from 3 =0
to 8 =~ 0.5, and for 8 ~ 1.
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Ratios to four-loop prediction
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behavior of the small-8 expansion at four loops

is similar to the two-loop and three-loop cases
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three alternative ways to plot the result

1
0 = 1n (Lﬁ)
1-p
B8 = 0 corresponds to § = 0 while 8 = 0.99999 corresponds to 6 ~ 12.2
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Ratios to exact results for n.=4
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The difference between Ff) and I'® is 1 per mille or less over the entire 5 range
from O to 1. It is less than one part per million from g =0 up to 8 = 0.16, and 0.1 per
mille or better for 3 =0 to 3~ 0.6, and 8 =0.8 and 8 = 0.9, and for  ~ 1

The difference between I‘Ej’) and T'® is 1 per mille or better everywhere. It is less

than one part per million from 8 = 0 up to f = 0.15, and 0.1 per mille or better from

B=0to 8~ 0.5and for 3 ~ 1.
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three alternative ways to plot the result

1
0 = 1n (Lﬁ)
1-p
B8 = 0 corresponds to § = 0 while 8 = 0.99999 corresponds to 6 ~ 12.2
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Ratios to exact results for n.=5
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The difference between Ff) and I'® is 1 per mille or less over the entire 5 range
from O to 1. It is less than one part per million from 5 =0 to 8 = 0.16, and better than
0.1 per mille for 8 =0 to above 8 ~ 0.5, and 8 =0.8 to 8 = 0.9, and for  ~ 1

The difference between I’Ej) and I'® is well below 3 per mille everywhere. It is less

than one part per million from 8 =0 to 8 =~ 0.14, and 0.1 per mille or better from 8 =0
to 3~ 0.5 and for g~ 1
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I'cusp With other values of n;

calculated the cusp anomalous dimension for integer values
of ny from 0 to 10

results are remarkably consistent, in that the formula always
provides an excellent approximation to the exact results at two
and three loops, throughout the 8 range

robust results at four loops
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Extensions of the expressions and method

One obvious extension is to include more (or fewer) terms in the small-8 expansion:

small— g small—

(n) _ p(n) (1) (1)
r =r — K,T 5+ KnT

additional terms have negligible impact

Another possible extension is to include further exact results (in addition to the
exact terms already present) for some color structures and/or other combinations of
terms (when those are known) in the approximate expression.

For example, at three loops we can include the full two-loop results in our expres-

sion and only have a small-5 expansion in c® ; i.e., we could consider the alternative
expression

2K (I — Ko™ + C3 4+ KD

This, again, makes a negligible difference over the entire § range, at the level of parts
per million for much of it, with details depending on the number of flavors.

The method is also clearly applicable to higher numbers of loops, and it could be
utilized when the necessary information becomes available. For example, for a five-
loop prediction, we would need to know the small-3 expansion of the cusp anomalous

dimension at five loops as well as the result for the lightlike K5.
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Further study of color structures

Study of the approximation separately for each color structure in the cusp anomalous
dimension at each perturbative order.

At two loops, the CrC 4 terms are not exact in Ffj) while the Crn; terms are ex-
act. The approximation from asymptotics just for the Cr(C 4 terms alone gives excellent
agreement with the exact result for those terms, better than 1 per mille everywhere in
the 5 range, and much smaller than that for most of the range.

At three loops, the C’%nf and the C’Fn? terms are exact in FS’), but the CFC?q and
CrCany terms are not exact. The approximation from asymptotics provides excellent
agreement with the exact result for both the CFC?q and CrCany terms, within a fraction
of one per mille everywhere in the 8 range, smaller than 0.1 per mille for the majority
of the [ range, and smaller than one part per million at small speeds.

At four loops, the C’%nf, C%n?, and C’Fn? terms in Fff) are exact, but all the rest of

the terms in Ff:), i.e. the CFCfZ, CI%CAnf, CFCinf, CFCAn?c, drdr, and drpds terms, are
not exact.

Exact (conjectured) results for C% Canys terms and Cr CAn?c terms in ') are in superb
agreement with my results from asymptotics. The difference is at the level of parts per
million up to 8 = 0.3, less than 0.03 per mille for the vast majority of the 5 range, and
less than a small fraction of one per mille (0.3 per mille for C’%CAnf, and 0.2 per mille

for CpCan?) for all .
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Furthermore, even though the drdr exact results are very complicated, one can
investigate further known terms of this color structure at small speeds. We find that
the contribution of the 3° terms in the small-3 expansion of the dpdr color structure at
four loops do not materially change the four-loop prediction: a difference of less than
one part per million for much of the g range, and everywhere less than 0.02 per mille for
ny = 3, 0.05 per mille for n; = 4, and 0.7 per mille for n; = 5. Once again, this highlights
the robustness of our approach and the reliability of our method.

Finally, we can also investigate the effect of including the exact form of the conjec-
tured C% Cany and Cr CAn?c terms in our four-loop expression. Again, we find remarkable
robustness in our method, consistent with all the previous checks. The difference be-
tween the results is negligible, of the order of parts per million for much of the § range
(with exact numbers depending on the number of flavors) and at the level of per mille
for the entirety of the g range.

Thus, the four-loop result is very robust and precise, and the inclusion of any future
exact results or more terms in the small-8 expansion would make very little numerical

difference.

N. Kidonakis. Loopfest 202/4. Dallas. TX. Mauy 202/

292



Summary

cusp anomalous dimension at higher loops
asymptotics at large and small 3

an approximate formula through four loops

studies for various n; and separate color structures
robust and precise results

method can be extended in a number of directions
and to higher loops
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