A GMVFN scheme for Z boson associated with a heavy quark production at hadron colliders

Keping Xie

Michigan State University

With M. Guzzi P. Nadolsky, L. Reina, D. Wackeroth

MICHIGAN STATE UNIVERSITY

LoopFest XXII at SMU, Dallas May 21, 2024

Main Goals

Simplify implementation of GMVFN schemes in (N)NLO QCD calculations using the formalism of subtracted PDFs

Associated production of a Z boson with c- or b-quark jets in pp collisions provides direct access to c and b PDFs.

Constrain heavy-flavor PDFs in global QCD analyses;

 \succ Probe QCD dynamics at small and large x.

Probe nonperturbative c, b contributions in the proton

- This talk: S-ACOT-MPS scheme to $pp \rightarrow Z+b+X$ in pQCD
- Previously implemented for inclusive charm [2108.03741, 2109.10905, 2203.05090] and bottom [2203.06207, Xie's Thesis] production. Related S-ACOT-mT scheme (Helenius, Paukkunen JHEP23, 2303.17864) for B-meson production.

Motivations

 Z + c/b production at the LHC at small p_T and large rapidity y of the heavy quark: sensitive to PDFs at both small and large x

$$x_1 \ge \frac{1}{\sqrt{s}} \left(\sqrt{(p_T^Z)^2 + m_{\ell\ell}^2} \exp(-y_Z) + p_T^{\text{jet}} \exp(-y_{\text{jet}}) \right)$$
$$x_2 \ge \frac{1}{\sqrt{s}} \left(\sqrt{(p_T^Z)^2 + m_{\ell\ell}^2} \exp(-y_Z) + p_T^{\text{jet}} \exp(-y_{\text{jet}}) \right)$$

- In this kinematic region PDFs are poorly constrained by other experiments in global QCD analyses of PDFs.
- Z + c/b production in the $3 < |y_Z| < 4$ rapidity range in pp collisions at the LHC 13.6 TeV can probe $x \approx 10^{-4}$. When $p_T \ge 40$ GeV, it can probe $x \ge 0.3$

The CT18 gluon PDF *Phys.Rev.D* 103 (2021). Small- and large-*x* regions have wide uncertainty bands. (See also: The PDF4LHC21 combination of global PDF fits for the LHC Run III, 2203.05506 [hep-ph].)

Motivations

- Modern PDF analyses: extend on wide range of collision energies. Sensitive to mass effects, e.g., phase space suppression, large radiative corrections to collinear $Q\bar{Q}$ production. Magnitude comparable to NNLO and N3LO corrections.
- Natural to evaluate all fitted cross sections in a GMVFN scheme, which assumes that the number of (nearly) massless quark flavors varies with energy, and at the same time includes dependence on heavy-quark masses in relevant kinematical regions.
- Z+b and Z+bb dominant background for Higgs boson production in association with a Z boson (ZH, H → bb) in the SM, and in BSM scenarios: SUSY Higgs bosons + b-quark, and new generations of heavy quarks decaying to a Z boson and a b quark.
- Probing this regime (and beyond, at future facilities) helps us shed light on the (intrinsic) heavy-flavor content of the proton, and on small-x dynamics.

Large inflow of new measurements @LHC

Precise measurements Z + c/b-jets available from the ATLAS, CMS and LHCb collaborations at the LHC

Probing HF content of the proton

GMVFN schemes in a nutshell

Heavy-flavor production dynamics is nontrivial due to the interplay of massless and massive schemes which are different ways of organizing the perturbation series

Massive Schemes: final-state HQ with $p_T \le m_Q \Rightarrow p_T$ -spectrum can be obtained in the **fixed-flavor number (FFN) scheme**. - No heavy-quark PDF in the proton. Heavy flavors generated as massive final states. m_Q is an infrared cut-off. - Power terms $\left(p_T^2/m_Q^2\right)^p$ are correctly accounted for in the perturbative series.

Massless schemes: $p_T \gg m_Q \gg m_P \Rightarrow$ appearance of log terms $\alpha_s^m \log^n (p_T^2/m_Q^2)$ that spoil the convergence of the fixed-order expansion. Essentially, a **zero mass (ZM) scheme**.

- Heavy quark is considered essentially massless and enters also the running of α_s .

- Need to resum these logs with DGLAP: initial-state logs resummed into a heavy-quark PDF, final-state logs resumed into a fragmentation function (FF)

Interpolating (GMVFN) schemes: composite schemes that retain key mass dependence and efficiently resum collinear logs, so that they combine the FFN and ZM schemes together. They are crucial for:

- a correct treatment of heavy flavors in DIS and PP,
- accurate predictions of key scattering rates at the LHC,
- global analyses to determine proton PDFs.

Matching GM schemes in Z/H+b

A lot of work has been done in trying to understand the interplay between 4FS and 5FS in single and double bottom-quark initiated processes relevant for Higgs and Z production.

The list here is of course not exhaustive:

- Gauld, Gehrmann-De Ridder, Glover, Huss, Majer 2005.03016: (FO calculation for Z+ b-jet at O(α_s^3) in QCD, combines ZM NNLO and FFNS NLO)
- Forte, Giani, Napoletano EPJC 2019: (massive b-scheme)
- Figueroa, Honeywell, Quackenbush, Reina, Reuschle, Wackeroth, PRD 2018: (massive b-scheme, Z + b-jet at $O(\alpha_s^2 \alpha)$ and $O(\alpha_s \alpha^2)$ within ACOT and S-ACOT)
- Forte, Napoletano, Ubiali EPCJ 2018: (FONLL method to match 5FS with massless b to 4FS with massive b)
- Krauss, Napoletano, Schumann, PRD 2017: (Z/H + b with SHERPA);
- Lim, Maltoni, Ridolfi, Ubiali JHEP 2016: (b-bbar-initiated processes at the LHC);
- Bonvini, Papanastasiou, Tackmann, JHEP 2015, JHEP 2016: (4 matched calculation b-bar-H);
- Forte, Napoletano, Ubiali, PLB 2015;
- Maltoni, Ridolfi, Ubiali JHEP 2012: (b-initiated processes at the LHC);
- Campbell, Caola, Cordero, Reina, Wackeroth, PRD 2012;
- Campbell, Ellis, Cordero, Maltoni, Reina, Wackeroth, Willenbrock, PRD 2009;
- Dawson, Jackson, Reina, Wackeroth PRD 2004;
- Maltoni, Sullivan, Willenbrock, PRD 2003;
-

Progress on OMEs calculations

- J. Ablinger, A. Behring, J. Blumlein, A. De Freitas, et al., NPB(2024), arXiv:2311.00644.
- J. Ablinger, A. Behring, J. Blumlein, A. De Freitas, et al., JHEP(2022), arXiv:2211.05462.
- J. Ablinger, A. Behring, J. Blumlein, A. De Freitas, et al., NPB(2014), arXiv:1409.1135
- J. Ablinger, J. Blumlein, A. De Freitas, A. Hasselhuhn, et al., NPB(2014), arXiv:1402.0359
- J. Blumlein, J. Ablinger, A. Behring, A. De Freitas, et al., PoS, QCDEV2017(2017), arXiv:1711.07957
- A. Behring, I. Bierenbaum, J. Blumlein, A. De Freitas, et al., EPJC(2014), arXiv:1403.6356.
- J. Ablinger, J. Blumlein, A. De Freitas, A. Hasselhuhn, et al., NPB(2014), arXiv:1405.4259.
- J. Ablinger, A. Behring, J. Blumlein, et al, NPB(2014), arXiv:1406.4654.
- J. Ablinger, J. Blumlein, S. Klein, et al., NPB(2011), arXiv:1008.3347.
- I. Bierenbaum, J. Blumlein, and S. Klein, PLB(2009), arXiv:0901.0669.
- I. Bierenbaum, J. Blumlein, S. Klein, and C. Schneider, NPB(2008), arXiv:0803.0273.
- I. Bierenbaum, J. Blumlein, and S. Klein, NPB(2009), arXiv:0904.3563.

Keping Xie (MSU) "

Main idea behind S-ACOT-MPS (massive phase space)

 $\sigma = FC + FE - SB$

``Residual FE''

FC = Flavor creation contributions with full mass dependence FE = Flavor excitation contribution with approximate mass dependence

(available from public codes)

Mass fully retained in the *PS* in all terms. Kinematical power corrections under control.

Subtraction well defined at the quark mass threshold

FE and Subtraction is facilitated by introducing residual PDF:

Subtracted and Residual PDFs are provided in the form of LHAPDF grids for phenomenology applications: <u>https://sacotmps.hepforge.org/downloads?f=PDFs</u>

More details in K. Xie PhD Thesis: "Massive elementary particles in the standard model and its supersymmetric triplet higgs extension." https://scholar.smu.edu/hum_sci_physics_etds/7, 2019.

step

$$\delta f_Q(x,\mu^2) = f_Q(x,\mu^2) - \frac{\alpha_s}{2\pi} \log\left(\frac{\mu^2}{m_Q^2}\right) f_Q(x,\mu^2) \otimes P_{Q\leftarrow g}(x)$$
rg/downloads?f=PDEs
at LO

S-ACOT-MPS Theory framework

The differential cross section for parton a + parton b \rightarrow Z + Q + X with a, b having zero mass can be written as follows

$$\frac{d\sigma(a\,b\to Z,Q,X)}{dQ^2d\mathcal{X}} = G_{ab}\left(x_A, x_B, Q; \frac{\mu}{Q}, \frac{m_Q}{\mu}, \alpha_s, N_f, N_f^{fs}\right)$$

The factorization formula can be written as

$$\begin{aligned} G_{a,b}\bigg(x_A, x_B, Q; \frac{\mu}{Q}, \frac{m_Q}{\mu}, \alpha_s, N_f, N_f^{fs}\bigg) &= \sum_{c,d=0}^{N_f} \int_{x_A}^1 d\xi_A \int_{x_B}^1 d\xi_B \\ &\times f_{c/a}(\xi_A, Q) \ H_{c,d}\bigg(\frac{x_A}{\xi_A}, \frac{x_B}{\xi_B}, Q; \frac{\mu}{Q}, \frac{m_Q}{\mu}, \alpha_s, N_f, N_f^{fs}\bigg) \ f_{d/b}(\xi_B, Q). \end{aligned}$$

Perturbative expansion of terms leads to

$$\begin{aligned} G_{i,b}(x_A, x_B) &= G_{i,b}^{(0)}(x_A, x_B) + a_s G_{i,b}^{(1)}(x_A, x_B) + a_s^2 G_{i,b}^{(2)}(x_A, x_B) + \dots, \\ H_{i,a}(\widehat{x}_A, \widehat{x}_B) &= H_{i,a}^{(0)}(\widehat{x}_A, \widehat{x}_B) + a_s H_{i,a}^{(1)}(\widehat{x}_A, \widehat{x}_B) + a_s^2 H_{i,a}^{(2)}(\widehat{x}_A, \widehat{x}_B) + \dots, \\ f_{a/b}(\xi) &= \delta_{ab}\delta(1-\xi) + a_s A_{ab}^{(1)}(\xi) + a_s^2 A_{ab}^{(2)}(\xi) + a_s^3 A_{ab}^{(3)}(\xi) + \dots, \end{aligned}$$

$$\hat{x} = x/\xi.$$

$$A_{ab}^{(k)} \ (k = 0, 1, 2, \dots) \quad \text{OME's}$$

$$A_{ab}^{(k)} \ (k = 0, 1, 2, \dots) \quad \text{OME's}$$

$$A_{ab}^{(1)}(\xi) = 2P_{hg}^{(1)}(\xi) \ln (\mu^2/m_h^2) \quad \text{For } g \to Q\bar{Q}$$

S-ACOT-MPS cancellation pattern at the lowest order

Subtracted and Residual PDFs are provided in the form of LHAPDF grids for phenomenology applications: <u>https://sacotmps.hepforge.org/downloads?f=PDFs</u>

Keping Xie (MSU)

MZb distribution at the lowest order $\mu = M_Z$

Cancellation between the various terms is clearly visible.

For the theory calculation: The combined b-bbar jet can be declared either as a b-jet (an experimental-driven definition) or unflavored jet, such as flavored-kT algorithm (a theoretical infrared-safe definition, adopted in the recent W+c (Czakon, Mitov, et al., 2011.01011) and W+b+bbar (Hartanto Poncelet, et al. 2205.01687), and Z+c (Gauld, Gehrmann-DeRidder et al., 2005.03016) calculations at NNLO in QCD.

pT of b and pT of Z at lowest order $\mu = M_Z$

S-ACOT-MPS cancellation pattern at NLO

MZb distribution at NLO

 $\mu = M_Z$

Theory predictions for Z+at least one b jet obtained with an in-house code + NLOX for virtual (Figeroa, et al. CPC(2022) arXiv:2101.01305; Honeywell, et al. CPC(2020) arXiv: 1812.11925)

pT of b and pT of Z at NLO $\mu = M_Z$

Theory predictions for Z+at least one b jet obtained with an in-house code + NLOX for virtual (Figeroa, et al. CPC(2022) arXiv:2101.01305; Honeywell, et al. CPC(2020) arXiv: 1812.11925)

Concluding remarks

- We applied the S-ACOT-MPS at NLO to Z+Q production in pp collisions at the LHC
- S-ACOT-MPS developed at NLO: used to describe Z+Q production differentially (ongoing, scale dependence, optimal kinematics, etc)
- Technically possible to generate predictions within the S-ACOT-MPS scheme at NNLO with K-factors (NNLO/NLO) at hand.
- Direct access to c/b-PDF: Important to constrain heavy-flavor PDFs.
- Residual PDFs are provided in the form of LHAPDF grids to allow users for multiple pheno applications
- Work toward simplifying implementation of GMVFN schemes in (N)NLO QCD calculations using the formalism of subtracted PDFs