NNLO+PS predictions for Higgs production in bottom quark fusion with MiNNLO_{PS}

Aparna Sankar

In collaboration with C. Biello, M. Wiesemann, G. Zanderighi + (J. Mazzitelli)

Technische Universität München

Dallas Texas USA, 20 May 2024

Although it is a subdominant channel, its cross section is large enough.

20/05/24

- Although it is a subdominant channel, its cross section is large enough.
- Direct probe of Higgs couplings to the bottom quark
 (y_b) in production
- Bottom Yukawa coupling: Important due to its enhancement in New Physics models like minimal supersymmetric extensions of the SM

- Although it is a subdominant channel, its cross section is large enough.
- Direct probe of Higgs couplings to the bottom quark
 (y_b) in production
- Bottom Yukawa coupling: Important due to its enhancement in New Physics models like minimal supersymmetric extensions of the SM
- bbH enters as a background in other Higgs searches (notably HH)

bbH is also interesting on **how bottom quark is treated**

bbH is also interesting on **how bottom quark is treated**

[Image courtesy : C. Biello]

bbH is also interesting on **how bottom quark is treated**

- > Active parton inside the proton.
- Included in the parton distribution functions (PDFs) of the proton.
- It is taken to be massless except in the Yukawa coupling

[Image courtesy : C. Biello]

bbH is also interesting on **how bottom quark is treated**

- > Active parton inside the proton.
- Included in the parton distribution functions (PDFs) of the proton.
- It is taken to be massless except in the Yukawa coupling

- Considered as a heavy quark
- The bottom quark's contribution is neglected in the PDFs.
- A massive bottom quark is produced from gluon splitting

[Image courtesy : C. Biello]

- Computing higher orders is easier
- The DGLAP evolution resums initial state collinear logs into the bottom PDFs
- Neglects power-suppressed terms of the O(m_b/m_H)

[Image courtesy : C. Biello]

- Computing higher orders is easier
- The DGLAP evolution resums initial state collinear logs into the bottom PDFs
- Neglects power-suppressed terms of the O(m_b/m_H)

- Computing **higher orders** is more **difficult** due to higher multiplicity & also due to the massive bottom
- It does not resum possibly large collinear logs
- Full kinematics of the massive bottom quark is taken into account already at LO

[Image courtesy : C. Biello]

STATE OF THE ART:

N3LO for the total cross section in the 5FS

[Duhr, Dulat, Mistlberger (1904.09990)]

- N3LO matched to NLO in the 4FS by a prescription, namely, FONLL [Duhr, Dulat, Hirschi, Mistlberger (2004.04752)] [Forte, Napoletano, Ubiali [1508.01529, (1607.00389)]
- > NLO+PS in the 4FS (MADGRAPH5_AMC@NLO framework) [Wiesemann, Frederix, Frixione, Hirschi, Maltoni, Torrielli (1409.5301)]
- > NLO+PS in the 4FS using POWHEG+PYTHIA6
- > NLO-QCD+PS combined with NLO-EW in the 4FS
- > Full NLO-QCD $(y_b^2, y_t^2 \& y_b y_t)$ +PS in the 4FS

[Jäger, Reina, Wackeroth (1509.05843)]

[Pagani, Shao, Zaro (2005.10277)]

[Manzoni, Mazzeo, Mazzitelli , Wiesemann, Zaro (2307.09992)]

bbH simulation

Precise and realistic LHC phenomenology requires full-fledged event simulations.

bbH simulation

Precise and realistic LHC phenomenology requires full-fledged event simulations.

- MiNLO' + reweighting [Hamilton, Nason, Zanderighi (1212.4504)]
- Geneva [Alioli, Bauer, Berggren, Tackmann, Walsh, Zuberi (1211.7049)]
- UNNLOPS [Höche, Prestel (1507.05325)]

• UNNLOPS [Höche, Prestel (1507.05325)]

$\textbf{MINNLO}_{\text{PS}}$

- **2->1:** [Monni, Nason, Re, Wisemann, Zanderighi (1908.06987)] [Monni, Re, Wiesemann (2006.04133)]
- 2->2 : [Lombardi, Wiesemann, Zanderighi (2010.10478)]
- tt: [Mazzitelli, Monni, Nason, Re, Wiesemann, Zanderighi (2012.14267)]
- **bbZ** : [Mazzitelli, Sotnikov, Wiesemann (2404.08598)]

Talk by M. Wiesemann

$\textbf{MINNLO}_{\text{PS}}$

- **2->1:** [Monni, Nason, Re, Wisemann, Zanderighi (1908.06987)] [Monni, Re, Wiesemann (2006.04133)]
- 2->2 : [Lombardi, Wiesemann, Zanderighi (2010.10478)]
- t: [Mazzitelli, Monni, Nason, Re, Wiesemann, Zanderighi (2012.14267)]
- **bbZ** : [Mazzitelli, Sotnikov, Wiesemann (2404.08598)]

Talk by M. Wiesemann

	F	F+J	F+JJ
F@MiNNLO _{PS}	NNLO	NLO	LO

	F	F+J	F+JJ
F@MiNNLO _{PS}	NNLO	NLO	LO

- No computationally intense reweighting
- No unphysical merging scale
- Leading-log (LL) accuracy of the shower preserved

Talk by M. Wiesemann

Numerically efficient

20/05/24

- > The matching to the parton shower is performed according to the **POWHEG** method [P. Nason (0409146)]
- The **POWHEG** approach: we generate the **hardest radiation** (i.e. the largest p_T) **first** with **NLO** accuracy, then attaching a **parton shower** with **softer** emissions.

- > The matching to the parton shower is performed according to the **POWHEG** method [P. Nason (0409146)]
- The **POWHEG** approach: we generate the **hardest radiation** (i.e. the largest p_T) **first** with **NLO** accuracy, then attaching a **parton shower** with **softer** emissions.

> MiNNLO_{PS} in POWHEG framework: we start from a differential description of the production of the colour singlet and a jet ($pp \rightarrow F + J$). POWHEG Sudakov form factor

 $d\sigma_{F}^{MiNNLO_{PS}} = d\Phi_{FJ}\bar{B}^{MiNNLO_{PS}} \times \left\{ \Delta_{pwg}(\Lambda_{pwg}) + \int d\Phi_{rad}\Delta_{pwg}(p_{T,rad})\frac{R_{FJ}}{B_{FJ}} \right\}$ Describes the generation of the 1st radiation Describes the generation of the 2nd radiation according to the **POWHEG** method

$\label{eq:central ingredient of Minnlops} Very simplified notation! $$ \mu_{R} = \mu_{F} = p_{T}$$ $$ \overline{B}^{MiNNLO_{PS}} \sim e^{-\widetilde{S}} \left\{ d\sigma_{FJ}^{(1)} \big(1 + \widetilde{S}^{(1)}\big) + d\sigma_{FJ}^{(2)} + \big(D - D^{(1)} - D^{(2)}\big) \right\} $$ $$$

$\label{eq:central ingredient of Minnlops} Very simplified notation! \\ \mu_{\text{R}} = \mu_{\text{F}} = p_{\text{T}} \\ \bar{B}^{\text{Minnlo}_{\text{PS}}} \sim e^{-\tilde{S}} \left\{ \, d\sigma_{\text{FJ}}^{(1)} \big(1 + \tilde{S}^{(1)}\big) + d\sigma_{\text{FJ}}^{(2)} + \big(D - D^{(1)} - D^{(2)}\big) \, \right\}$

Sudakov form factor suppresses \overline{B} at low p_T

For bbH: We revised the original **MiNNLO**_{PS} method to account for the **Yukawa** coupling in MS **scheme**

20/05/24

The computation

Sample Feynman diagrams for Higgs production in association with bottom quarks

The computation

Sample Feynman diagrams for Higgs production in association with bottom quarks

We focus on the 5FS & 4FS calculation of the $b\bar{b}\text{H}$ process proportional to $Y^2_b~$ at NNLO+PS

NNLO+PS predictions for Higgs production in bottom-quark fusion with MiNNLO_{PS}

The computation (5FS)

- MiNNLO_{PS} $b\bar{b} \rightarrow H$ generator implemented in the Powheg-Box-Res
- First, we implemented a **NLO+PS** generator for **HJ** production in bottom ٠ fusion using the **Powheg** method

• Tree-level amplitudes of the **HJ & HJJ** : **OPENLOOPS**

[F. Buccioni, S. Pozzorini and M. Zoller (1710.11452), F. Buccioni et al (1907.13071)]

- substantially improve the numerical performance of the code
- In a second step, we extended the **HJ NLO+PS** implementation to **NNLO accuracy** through the MiNNLO_{PS} method

[Monni, Nason, Re, Wisemann, Zanderighi (1908.06987)] [Monni, Re, Wiesemann (2006.04133)]

[R.V. Harlander et al (1007.5411)]

Virtual corrections : Analytic results

The POWHEG BOX

[T. Ježo and P. Nason (1509.09071)]

[P. Nason (0409146), S. Alioli et al (1002.2581), S. Frixione et al (0709.2092)]

Phenomenological Results for bbH (5FS)

The Setup

Inputs:

- Center-of-mass energy: **13 TeV** at LHC.
- Higgs boson mass (m_H): **125 GeV**, Γ_H (decay width): 0 GeV.
- Default PDF: NNPDF40_nnlo_as_01180 with 5 active flavours.
- Central μ_R and μ_F scales set via **Minnlo**_{Ps} method [$\mu_R \sim \mu_F \sim p_T$].
- Yukawa coupling renormalized in \overline{MS} scheme [Y_b(m_b=4.18 GeV) -> Y_b(m_H) = 2.79].

Scale Settings and Uncertainties:

- Scale uncertainities assessed through customary **7-point** μ_R and μ_F variation.
- Matching to Parton Shower:
 - Predictions matched to parton shower using Pythia8 with leading-log (LL) accuracy.
- Exclusion of Effects:
 - Hadronization, multi-parton interactions (MPI), and QED radiation effects are switched off.

Comparison of the total inclusive cross section of **MiNLO'** and **MiNNLO**_{PS} predictions with fixedorder results at NLO and NNLO obtained with the public code **SusHi** [with μ_R and μ_F set to m_H]

[Harlander, Liebler, Mantler (1212.3249)]

Process NLO (SUSHI) NNI		NNLO (SUSHI)	MINLO'	MINNLO _{PS}
$b\bar{b} \rightarrow H$	$0.646(0)^{+10.4\%}_{-10.9\%} \mathrm{pb}$	$0.518(2)^{+7.2\%}_{-7.5\%}{ m pb}$	$0.571(1)^{+17.4\%}_{-22.7\%} \mathrm{pb}$	$0.509(8)^{+2.9\%}_{-5.3\%}$ pb

[Biello, AS, Wiesemann, Zanderighi (2402.04025)]

Comparison of the total inclusive cross section of **MiNLO'** and **MiNNLO**_{PS} predictions with fixedorder results at NLO and NNLO obtained with the public code **SusHi** [with μ_R and μ_F set to m_H]

[Harlander, Liebler, Mantler (1212.3249)]

Process	NLO (SUSHI)	NNLO (SUSHI)	MINLO'	MINNLO _{PS}
$bar{b} ightarrow H$	$0.646(0)^{+10.4\%}_{-10.9\%} \mathrm{pb}$	$0.518(2)^{+7.2\%}_{-7.5\%}{ m pb}$	$0.571(1)^{+17.4\%}_{-22.7\%} \mathrm{pb}$	$0.509(8)^{+2.9\%}_{-5.3\%}$ pb

[Biello, AS, Wiesemann, Zanderighi (2402.04025)]

- NNLO QCD corrections reduce cross section by > 10%
- Scale uncertainities significantly reduced with NNLO QCD corrections
- > Our MiNNLOps predictions are in agreement with NNLO QCD cross section within quoted uncertainties

Transverse-momentum spectrum of the Higgs boson ($p_{T,H}$)

Les Houches level (LHE)

NNLO [Harlander, Tripathi, Wiesemann (1403.7196)] MiNNLO_{PS} [Biello, **AS**, Wiesemann, Zanderighi (2402.04025)]

20/05/24

Transverse-momentum spectrum of the Higgs boson ($p_{T,H}$)

Les Houches level (LHE)

- Full agreement in large p_{T,H} regime with fixed-order predictions within quoted uncertainities
- > Fixed-order calculations diverge for $p_{T,H} \rightarrow 0$ MiNNLO_{PS} prediction remains finite

NNLO [Harlander, Tripathi, Wiesemann (1403.7196)] MiNNLO_{PS} [Biello, **AS**, Wiesemann, Zanderighi (2402.04025)]

Rapidity distribution of the Higgs boson (y_H)

PY8 level

NNLO [Mondini, Williams (2102.05487)] MiNNLO_{PS} [Biello, **AS**, Wiesemann, Zanderighi (2402.04025)]

Rapidity distribution of the Higgs boson (y_H)

PY8 level

- A good agreement, both in terms of normalization and in terms of shape, between the two central predictions.
- The bands of MiNNLO_{PS} result are more symmetric & slightly smaller than the NNLO ones.

NNLO [Mondini, Williams (2102.05487)] MiNNLO_{PS} [Biello, **AS**, Wiesemann, Zanderighi (2402.04025)]

Transverse-momentum spectrum of the Higgs boson (p_{T,H})

[Biello, AS, Wiesemann, Zanderighi (2402.04025)]

20/05/24

NNLO+PS predictions for Higgs production in bottom-quark fusion with MiNNLO_{PS} PY8 level

Transverse-momentum spectrum of the Higgs boson (p_{T,H})

PY8 level

- At small p_T, MiNNLO_{PS}
 significantly dampens
 distributions, reduces scale
 uncertainties.
- At large p_T, MiNLO' &
 MiNNLO_{PS} predictions coincide, both NLO accurate.

[Biello, AS, Wiesemann, Zanderighi (2402.04025)]

20/05/24

Transverse-momentum spectrum of the Higgs boson (p_{T,H})

Rapidity distribution of the Higgs (y_H)

At small p_T, MiNNLO_{PS}
 significantly dampens
 distributions, reduces scale
 uncertainties.

PY8 level

- At large p_T, MiNLO' & MiNNLO_{PS} predictions coincide, both NLO accurate.
- y_H distribution: MiNNLO_{PS} introduces a flat 12% negative correction, reduces scale uncertainties.

[Biello, AS, Wiesemann, Zanderighi (2402.04025)]

20/05/24

NNLO+NNLL [Harlander, Tripathi, Wiesemann (1403.7196)] MiNNLO_{PS} [Biello, **AS**, Wiesemann, Zanderighi (2402.04025)]

20/05/24

At large p_{T,H}: MiNNLO_{PS} shifted 10% up, well within the given scaleuncertainty bands.

 At small p_{T,H}: slightly worsen the agreement.
 MiNNLO_{PS} uncertainities are underestimated.

NNLO+NNLL [Harlander, Tripathi, Wiesemann (1403.7196)] MiNNLO_{PS} [Biello, **AS**, Wiesemann, Zanderighi (2402.04025)]

20/05/24

At large p_{T,H}: MiNNLO_{PS} shifted 10% up, well within the given scaleuncertainty bands.

- At small p_{T,H}: slightly worsen the agreement.
 MiNNLO_{PS} uncertainities are underestimated.
- Massless approximation misses potentially relevant mass effects at small p_T, need to combine with massive 4FS calculation.

NNLO+NNLL [Harlander, Tripathi, Wiesemann (1403.7196)] MiNNLO_{PS} [Biello, **AS**, Wiesemann, Zanderighi (2402.04025)]

We implemented **NLO+PS** for **Hbb** in **POWHEG** and compared it against **MiNLO**' obtained from a **Hbbj** generator

$(\mu_{ m \scriptscriptstyle R}^{(0),lpha},\mu_{ m \scriptscriptstyle R}^{(0),y})$	$\rm NLO_{PS}$	MiNLO'
$(rac{H_{ m T}}{4},m_{H})$	$0.381(2)^{+20.2\%}_{-15.9\%}{ m pb}$	$0.277(5)^{+34.5\%}_{-27.0\%}\mathrm{pb}$
$(rac{H_{\mathrm{T}}}{4},rac{H_{\mathrm{T}}}{4})$	$0.406(4)^{+16.6\%}_{-14.3\%}\mathrm{pb}$	$0.315(3)^{+30.6\%}_{-27.5\%}{ m pb}$
$\boxed{\frac{H_T}{4} = \frac{1}{4} \sum_{i \in \text{final}} \sqrt{m^2(a)}}$	$\frac{1}{p_T(i)} = \frac{\text{MiNLO' m}}{\text{than NLO}}$	ore than 20% less

[Biello, Mazzitelli, AS, Wiesemann, Zanderighi (in progress)]

20/05/24

We implemented NLO+PS for Hbb in POWHEG and compared it against MiNLO' obtained from a Hbbj generator

$(\mu_{ ext{ iny R}}^{(0),lpha},\mu_{ ext{ iny R}}^{(0),y})$	$\rm NLO_{PS}$	MiNLO'		
$(rac{H_{\mathrm{T}}}{4},m_{H})$	$0.381(2)^{+20.2\%}_{-15.9\%}{ m pb}$	$0.277(5)^{+34.5\%}_{-27.0\%}{ m pb}$		
$(rac{H_{\mathrm{T}}}{4},rac{H_{\mathrm{T}}}{4})$	$0.406(4)^{+16.6\%}_{-14.3\%}{ m pb}$	$0.315(3)^{+30.6\%}_{-27.5\%}{ m pb}$		
$\frac{H_T}{4} = \frac{1}{4} \sum \sqrt{m^2(i) + p_T^2(i)}$ MiNLO' more than 20% less than NLO				

- In MiNLO', the large log(m_b) terms in RV & RR contributions are not balanced.
- We need the **double virtual** (VV) to **cancel** this quasi-collinear **divergence**.

[Biello, Mazzitelli, AS, Wiesemann, Zanderighi (in progress)]

Double virtual Amplitude

The **VV correction** for a **massive bottom** pair and Higgs production is not known: Approximation using the **massification procedure: leading mass corrections** are restored

Collinear poles in 5FS Logs of m_b in 4FS $\mathscr{A}^{(2)} = \log(m_b) \text{-terms} + \text{const.} + \mathscr{O}\left(\frac{m_b}{Q}\right)$ $\mathscr{F}^{(2)}\mathscr{A}^{(0)}_{m_b=0} + \mathscr{F}^{(1)}\mathscr{A}^{(1)}_{m_b=0} + \mathscr{F}^{(0)}\mathscr{A}^{(2)}_{m_b=0}$ Massification coefficients Massless double virtual amplitude

Double virtual Amplitude

The **VV correction** for a **massive bottom** pair and Higgs production is not known: Approximation using the **massification procedure: leading mass corrections** are restored

Collinear poles in 5FS

Logs of m_b in 4FS

Predictions using

MiNNLO_{PS}

$\mathscr{A}^{(2)} =$	$\log(m_b)$ -terms + const. + O	$\left(\frac{m_b}{Q}\right)$

$$\mathscr{F}^{(2)}\mathscr{A}^{(0)}_{m_b=0} + \mathscr{F}^{(1)}\mathscr{A}^{(1)}_{m_b=0} + \mathscr{F}^{(0)}\mathscr{A}^{(2)}_{m_b=0}$$

Massification coefficients

Massless double virtual amplitude

$(\mu_{ m \scriptscriptstyle R}^{(0),lpha},\mu_{ m \scriptscriptstyle R}^{(0),y})$	NLO _{PS}	MiNLO'	$\mathrm{MiNNLO}_{\mathrm{PS}}\left(\mathcal{F}^{(0)}=0 ight)$
$(rac{H_{\mathrm{T}}}{4},m_{H})$	$0.381(2)^{+20.2\%}_{-15.9\%}\mathrm{pb}$	$0.277(5)^{+34.5\%}_{-27.0\%}\mathrm{pb}$	$0.434(1)^{+6.4\%}_{-9.9\%}{ m pb}$
$\left(\frac{H_{\mathrm{T}}}{4}, \frac{H_{\mathrm{T}}}{4}\right)$	$0.406(4)^{+16.6\%}_{-14.3\%}{ m pb}$	$0.315(3)^{+30.6\%}_{-27.5\%}{ m pb}$	$0.443(9)^{+4.0\%}_{-8.7\%}{ m pb}$

[Biello, Mazzitelli, **AS**, Wiesemann, Zanderighi (in progress)]

MINNLO_{PS} with **only logarithmic** contributions in the 2-loop predicts a total cross-section **bigger** than the **NLO+PS** one.

Double virtual Amplitude

• We used analytic VV amplitudes for massless bottoms computed in the leading color approximation

$$\mathcal{F}^{(2)} \mathscr{A}^{(0)}_{m_b=0} + \mathcal{F}^{(1)} \mathscr{A}^{(1)}_{m_b=0} + \mathcal{F}^{(0)} \mathscr{A}^{(2)}_{m_b=0} \quad \text{[Badger, Hartanto, Kryś, Zoia (2107.14733)]}$$

- Evaluation of special functions through **PentagonFunctions++** [Chicherin, Sotnikov, Zoia (2110.10111)]
- C++ code interfaced with POWHEG
- We cross-checked against the Zurich implementation (Chiara Savoini)

Massification procedure

Massification procedure

Total cross-section

Large differences in the predictions were first observed at the **LO**: the effect of collinear resummation is extremely large.

Total cross-section

Large differences in the predictions were first observed at the **LO**: the effect of collinear resummation is extremely large.

NLO: 5FS = 1.78 * 4 FS

NLO+PS (5FS)	NLO+PS (4FS)
$0.677(2)^{+11\%}_{-11\%} \mathrm{pb}$	$0.381(0)^{+20\%}_{-16\%}\mathrm{pb}$

Total cross-section

[Biello, Mazzitelli, AS, Wiesemann, Zanderighi (in progress)]

Higgs rapidity

[Biello, Mazzitelli, AS, Wiesemann, Zanderighi (in progress)]

Higgs p_T spectrum

[Biello, Mazzitelli, AS, Wiesemann, Zanderighi (in progress)]

Summary & Outlook

- Presented the first NNLO+PS computation for bbH in both 5FS & 4FS at the LHC by using MiNNLO_{PS} method.
- Extensive validation of 5FS predictions against fixed-order results from literature, showcasing consistency in relevant kinematical regions.
- For the 4FS, approximation of the double virtual using the massification procedure
- > Theoretical **tension** between the **4FS** & **5FS** predictions seem to stabilise **at NNLO**.
- Future directions include combination of full 4FS-5FS at NNLO+PS and also b-tagging of the MiNNLO_{PS} events.

Backup slides.....

At high рт,н: they coincide again

At small $p_{T,H}$: Acceptable agreement

- Very similar shapes for MiNLO' & MiNNLO_{PS} results
- MiNLO' & MiNNLO_{PS}: fully consistent within the quoted scale uncertainties

- → In 4FS, the phase-space integration is performed with $m_b \neq 0$.
- → The massless amplitudes must be evaluated on on-shell phase-space points P_0 with $m_b = 0$.

$$\mathcal{F}^{(2)} \mathscr{A}^{(0)}_{m_b=0} + \mathcal{F}^{(1)} \mathscr{A}^{(1)}_{m_b=0} + \mathcal{F}^{(0)} \mathscr{A}^{(2)}_{m_b=0}$$

- → We need an explicit mapping of massive phase-space points P , η : P → P₀, such that η (P) = P₀ + O(m_b /m_H).
- We have to ensure that η does not cause amplitudes to be evaluated near their singularities.
- → Since the quark- and gluon-initiated channels have distinct leading order momentum flows, we use dedicated mappings $\eta_{q\bar{q}}$, η_{gg} for each of the channels.

For $\eta_{q\bar{q}}$, we perform the simultaneous light-cone decomposition of the massive bottom and anti-bottom momenta p_b and $p_{\bar{b}}$, respectively, and determine the massless momenta \hat{p}_b and $\hat{p}_{\bar{b}}$ as

$$\hat{p}_{b} = \alpha^{+} p_{b} - \alpha^{-} p_{\bar{b}}, \qquad \alpha^{\pm} = \frac{1}{2} \left(1 \pm \left(1 - 4 \frac{m_{b}^{2}}{m_{b\bar{b}}} \right)^{-\frac{1}{2}} \right)$$
$$\hat{p}_{\bar{b}} = \alpha^{+} p_{\bar{b}} - \alpha^{-} p_{b},$$

which preserves the total momentum $\hat{p}_{b\overline{b}} \equiv p_{b\overline{b}}$ of the $b\overline{b}$ system and prevents a collinear $g \rightarrow b\overline{b}$ splitting in the quark channel.

The mapping $\eta_{q\bar{q}}$ is minimal in the sense that only the bottom-quark momenta are modified.

An side effect of the mapping $\eta_{q\bar{q}}$ (when applied in the gluon channel) is that p_b or $p_{\bar{b}}$ can become collinear to the initial state momenta p_1 or p_2 when the $b\bar{b}$ pair is produced at the threshold.

In the gluon channel this introduces a collinear singularity, and we therefore construct η_{gg} such that it avoids these configurations.

First, we set the massless momenta to

$$\begin{split} \hat{p}_x &= p_x + \left(\sqrt{1 - \frac{m_b^2 n_x^2}{(p_x \cdot n_x)^2}} - 1\right) \frac{(p_x \cdot n_x)}{n_x^2} \ n_x \quad \text{with } x \in \{b, \bar{b}\}\\ n_x &= p_x - p_1 \frac{(p_2 \cdot p_x)}{(p_1 \cdot p_2)} - p_2 \frac{(p_1 \cdot p_x)}{(p_1 \cdot p_2)}, \end{split}$$

where n_x are transverse to both p1 and p2 .

[Mazzitelli, Sotnikov, Wiesemann (2404.08598)]

Then to restore momentum conservation we consider two options:

1. We redistribute $\Delta p_{b\bar{b}} = p_b + p_{\bar{b}} - \hat{p}_b - \hat{p}_{\bar{b}}$ into \hat{p}_1 and \hat{p}_2 , such that $\hat{p}_{12} = \hat{p}_1 + \hat{p}_2 = p_1 + p_2 - \Delta p_{b\bar{b}}$, by performing a Lorentz boost on p_1 and p_2 in the direction $-\hat{p}_{12}$ followed by rescaling with $\sqrt{\hat{p}_{12}^2/p_{12}^2}$

OR

2. we redistribute $\Delta p_{b\overline{b}}$ into the Higgs momentum instead.

Cross-section details (4FS)

	K _R	K _F	MINLO'	MINNLO _{PS} (Orig. Mass.)	MINNLO _{PS} (Gen. Mass.)
	1	1	0.277(0)	0.460(7)	0.464(9)
	1	2	0.268(8)	0.465(2)	0.470(7)
	2	1	0.192(5)	0.403(0)	0.408(1)
	2	2	0.195(5)	0.407(0)	0.412(1)
	1	$\frac{1}{2}$	0.258(9)	0.457(8)	0.466(0)
	$\frac{1}{2}$	1	0.382(7)	0.520(7)	0.527(4)
	$\frac{1}{2}$	$\frac{1}{2}$	0.375(3)	0.519(3)	0.525(1)
Π			$0.277(0)^{+34\%}_{-27\%}{ m pb}$	$0.460(7)^{+13\%}_{-13\%}{ m pb}$	$0.464(9)^{+14\%}_{-13\%}\mathrm{pb}$

Before the two-loop | 4FS

FONLL matching

- FONLL matches the flavour schemes $\sigma^{FONNL} = \sigma^{4FS} + \sigma^{5FS}$ double couting. For a consistent subtraction, we have to express the two cross-sections in terms of the same α_s and PDFs.
- Currently, the flavour matching for bbH is performed at

 $FONNL_C := N^3 LO_{5FS} \oplus NLO_{4FS}$.