Five Parton Scattering at Two Loops

Harald ItaIn collaboration with De Laurentis, Klinkert,
Sotnikov [2311.100086, 2311.18752]

Laboratory for Particle Physics Theory Group Paul Scherrer Institut

Loopfest 2024, May 20-22 Southern Methodist University Dallas Texas S-matrix

20th of May

• Impressive understanding of Standard Model at high-energy collisions

[ATL-PHYS-PUB-2022-009, February 2022]

νν γγ Η

Theory

LHC pp $\sqrt{s} = 13 \text{ TeV}$

LHC pp $\sqrt{s} = 8$ TeV

LHC pp $\sqrt{s} = 7$ TeV

LHC pp $\sqrt{s} = 5$ TeV

Δ

V

wwv tīγ

Hjj VH Vγ tτ̄V tτ̄H

tot.

Data 3.2 - 139 fb-1

Data 20.2 - 20.3 fb-1

Data 4.5 - 4.9 fb-1

Data 0.03 - 0.3 fb-1

γγγ **ν**γγ^Ζγϳϳ

Vjj tīttī

EWK

VVjj

• Ten-fold increase in data at LHC experiments

- Physics goal: Higgs couplings 2-4%, W mass, top mass, sin θ_w, multi W/Z,...
- Theory goal: few-percent precision for many observables:

$$\sigma = \sigma_{LO} + \alpha_s \Delta \sigma_{nlo}^{qcd} + \alpha_s^2 \Delta \sigma_{nnlo}^{qcd} + \alpha_f \Delta \sigma_{nlo}^{ew} + \dots$$

[ATL-PHYS-PUB-2022-009, February 2022]

• NNLO QCD calculations: large K factors

[Kallweit, Sotnikov, Wiesemann, 20] [see also Chawdhry, Czakon, Mitov, Poncelet,19] VVjj

• Scattering amplitudes for NNLO QCD cross sections to five-point processes:

		Comment	Complete analytic results	Public numerical code	Cross sections
	$pp \to \gamma\gamma\gamma$ $pp \to \gamma\gammaj$	l.c.*	[1–3] [6, 7]	[1 <mark>, 3</mark>] [6]	[4, 5] [8]
	$pp \to \gamma \gamma j$ $gg \to \gamma \gamma g$	NLO loop induced	[9]	[10]	[11]
New	$pp \to \gamma j j$ $pp \to j j j$	l.c.	[12] [13], [14–16]	[13], <mark>[16]</mark>	[12] [17, 18]
	$pp \rightarrow Wb\bar{b}$ $pp \rightarrow W(l\nu)b\bar{b}$ $pp \rightarrow W(l\nu)jj$ $pp \rightarrow Z(l\bar{l})jj$ $pp \rightarrow W(l\nu)\gamma j$	l.c.*, on-shell W l.c. l.c. l.c.* l.c.*	[19, 20] [21, 22] [21] [21] [23]		[22]
	$pp \rightarrow Hb\bar{b}$ $pp \rightarrow Ht\bar{t}$	Yukawa approx. 2-loop	[24]		[25]

Status: Five-Point Two-Loop Amplitudes

Table 1: Known two-loop QCD corrections for five-point scattering processes at hardon colliders. "I.c." refers to the calculations in the leading-color approximation; "I.c.*" means that in addition non-planar I.c. contributions are omitted. All public codes employ PentagonFunctions++ [26, 27] for numerical evaluation of special functions.

- New: five-carton non-planar amplitudes [Agarwal, Buccioni, Devoto, Gambuti, von Manteuffel, Tancredi '23], [De Laurentis, HI, Klinkert, Sotnikov '23]
- New: five-point one-mass non-planar integral library [Abreu, Chicherin, HI, Page, Sotnikov, Tschernow, Zoia '24]
- Future demand: multi-scale processes with 5-10 kinematic scales
 - [5 x 4 (mom.) + 5 (masses) -
 - 5 (mass shell) 4 (mom. cons.) 6 (Lorentz) = 10]

Adapted from [Sotnikov '22; Abreu '22]

See also Les Houches Standard-Model Precision Wishlist [Huss, Huston, Jones, Pellen '22]

Status: Five-Point Two-Loop Amplitudes

- [1] S. Abreu, B. Page, E. Pascual and V. Sotnikov, *Leading-Color Two-Loop QCD Corrections for Three-Photon Production at Hadron Colliders*, *JHEP* 01 (2021) 078 [2010.15834]. (page 2)
- [2] H.A. Chawdhry, M. Czakon, A. Mitov and R. Poncelet, *Two-loop leading-color helicity* amplitudes for three-photon production at the LHC, JHEP 06 (2021) 150 [2012.13553]. (page 2)
- [3] S. Abreu, G. De Laurentis, H. Ita, M. Klinkert, B. Page and V. Sotnikov, *Two-Loop QCD Corrections for Three-Photon Production at Hadron Colliders*, 2305.17056. (page 2)
- [4] H.A. Chawdhry, M.L. Czakon, A. Mitov and R. Poncelet, NNLO QCD corrections to three-photon production at the LHC, JHEP 02 (2020) 057 [1911.00479]. (page 2)
- [5] S. Kallweit, V. Sotnikov and M. Wiesemann, Triphoton production at hadron colliders in NNLO QCD, Phys. Lett. B 812 (2021) 136013 [2010.04681]. (page 2)
- [6] B. Agarwal, F. Buccioni, A. von Manteuffel and L. Tancredi, *Two-loop leading colour QCD corrections to qq̄ → γγg and qg → γγq, JHEP* 04 (2021) 201 [2102.01820]. (page 2)
- [7] H.A. Chawdhry, M. Czakon, A. Mitov and R. Poncelet, *Two-loop leading-colour QCD helicity amplitudes for two-photon plus jet production at the LHC*, *JHEP* 07 (2021) 164
 [2103.04319]. (page 2)
- [8] H.A. Chawdhry, M. Czakon, A. Mitov and R. Poncelet, NNLO QCD corrections to diphoton production with an additional jet at the LHC, JHEP 09 (2021) 093 [2105.06940]. (page 2)
- [9] B. Agarwal, F. Buccioni, A. von Manteuffel and L. Tancredi, *Two-Loop Helicity Amplitudes for Diphoton Plus Jet Production in Full Color*, *Phys. Rev. Lett.* **127** (2021) 262001
 [2105.04585]. (pages 2 and 3)

- [10] S. Badger, C. Brønnum-Hansen, D. Chicherin, T. Gehrmann, H.B. Hartanto, J. Henn et al., Virtual QCD corrections to gluon-initiated diphoton plus jet production at hadron colliders, JHEP 11 (2021) 083 [2106.08664]. (pages 2, 3, and 5)
- [11] S. Badger, T. Gehrmann, M. Marcoli and R. Moodie, Next-to-leading order QCD corrections to diphoton-plus-jet production through gluon fusion at the LHC, Phys. Lett. B 824 (2022) 136802 [2109.12003]. (page 2)
- [12] S. Badger, M. Czakon, H.B. Hartanto, R. Moodie, T. Peraro, R. Poncelet et al., *Isolated photon production in association with a jet pair through next-to-next-to-leading order in QCD*, *JHEP* 10 (2023) 071 [2304.06682]. (page 2)
- [13] S. Abreu, F.F. Cordero, H. Ita, B. Page and V. Sotnikov, *Leading-color two-loop QCD corrections for three-jet production at hadron colliders*, *JHEP* 07 (2021) 095 [2102.13609]. (pages 2 and 7)
- B. Agarwal, F. Buccioni, F. Devoto, G. Gambuti, A. von Manteuffel and L. Tancredi, *Five-parton scattering in QCD at two loops, Phys. Rev. D* 109 (2024) 094025 [2311.09870]. (page 2)
- [15] G. De Laurentis, H. Ita, M. Klinkert and V. Sotnikov, *Double-virtual NNLO QCD corrections for five-parton scattering*. *I. The gluon channel*, *Phys. Rev. D* 109 (2024) 094023 [2311.10086]. (page 2)
- [16] G. De Laurentis, H. Ita and V. Sotnikov, *Double-virtual NNLO QCD corrections for five-parton scattering*. II. The quark channels, Phys. Rev. D 109 (2024) 094024
 [2311.18752]. (page 2)

Status: Five-Point Two-Loop Amplitudes

- [17] M. Czakon, A. Mitov and R. Poncelet, Next-to-Next-to-Leading Order Study of Three-Jet Production at the LHC, Phys. Rev. Lett. 127 (2021) 152001 [2106.05331]. (page 2)
- [18] X. Chen, T. Gehrmann, N. Glover, A. Huss and M. Marcoli, Automation of antenna subtraction in colour space: gluonic processes, 2203.13531. (page 2)
- [19] S. Badger, H.B. Hartanto and S. Zoia, Two-Loop QCD Corrections to Wbb⁻Production at Hadron Colliders, Phys. Rev. Lett. 127 (2021) 012001 [2102.02516]. (pages 2, 3, 4, and 8)
- [20] H.B. Hartanto, R. Poncelet, A. Popescu and S. Zoia, *Flavour anti-k_T algorithm applied to* $Wb\bar{b}$ production at the LHC, 2209.03280. (page 2)
- [21] S. Abreu, F. Febres Cordero, H. Ita, M. Klinkert, B. Page and V. Sotnikov, *Leading-color two-loop amplitudes for four partons and a W boson in QCD*, *JHEP* 04 (2022) 042
 [2110.07541]. (pages 2, 3, and 5)
- [22] H.B. Hartanto, R. Poncelet, A. Popescu and S. Zoia, NNLO QCD corrections to Wbb production at the LHC, 2205.01687. (pages 2, 3, and 4)
- [23] S. Badger, H.B. Hartanto, J. Kryś and S. Zoia, *Two-loop leading colour helicity amplitudes* for $W\gamma + j$ production at the LHC, JHEP **05** (2022) 035 [2201.04075]. (pages 2 and 3)
- [24] S. Badger, H.B. Hartanto, J. Kryś and S. Zoia, Two-loop leading-colour QCD helicity amplitudes for Higgs boson production in association with a bottom-quark pair at the LHC, JHEP 11 (2021) 012 [2107.14733]. (pages 2 and 3)
- [25] S. Catani, S. Devoto, M. Grazzini, S. Kallweit, J. Mazzitelli and C. Savoini, t*t* H production in NNLO QCD, 2210.07846. (page 2)

Feynman-Integrals for massless propagators

- [26] D. Chicherin and V. Sotnikov, Pentagon Functions for Scattering of Five Massless Particles, JHEP 12 (2020) 167 [2009.07803]. (pages 2, 3, 6, 7, and 8)
- [27] D. Chicherin, V. Sotnikov and S. Zoia, Pentagon functions for one-mass planar scattering amplitudes, JHEP 01 (2022) 096 [2110.10111]. (pages 2, 4, 6, and 9)
- [28] D. Chicherin, T. Gehrmann, J. Henn, P. Wasser, Y. Zhang and S. Zoia, All Master Integrals for Three-Jet Production at Next-to-Next-to-Leading Order, Phys. Rev. Lett. 123 (2019) 041603 [1812.11160]. (pages 2 and 3)
- [29] S. Abreu, H. Ita, F. Moriello, B. Page, W. Tschernow and M. Zeng, *Two-Loop Integrals for Planar Five-Point One-Mass Processes*, *JHEP* 11 (2020) 117 [2005.04195]. (pages 2, 3, and 7)
- New [30] S. Abreu, D. Chicherin, H. Ita, B. Page, V. Sotnikov, W. Tschernow et al., All Two-Loop Feynman Integrals for Five-Point One-Mass Scattering, Phys. Rev. Lett. 132 (2024) 141601 [2306.15431].

Amplitude Computation

Feynman diagrams:

$$A = \sum_{i \in \text{all integrals}} I_i(\epsilon, \vec{p}) ,$$

$$I_i(\epsilon, \vec{p}) = \int d^D \ell d^D \tilde{\ell} \frac{n_i(\ell, \tilde{\ell})}{\ell^2 (\ell - p_1)^2 \cdots (\tilde{\ell} - p_1 - \dots p_n)^2}$$

• Integration-by-parts relations (IBP): [Chetyrkin, Tkachov 81; Laporta 00]

$$\int d^{D}\ell d^{D}\tilde{\ell} \frac{\partial}{\partial \ell_{\mu}} \left[\frac{v^{\mu}(\ell, \tilde{\ell})}{\ell^{2}(\ell - p_{1})^{2} \cdots (\tilde{\ell} - p_{1} - \dots p_{n})^{2}} \right] = 0$$

$$\rightarrow \sum_{i \in \text{all integrals}} b_{i}(\epsilon, \vec{p}) I_{i}(\epsilon, \vec{p}) = 0$$

 \hookrightarrow find basis of integrals by solving linear system

• Sum of master integrals:

•

$$A = \sum_{i \in \text{basis}} c_i(\epsilon, \vec{p}) I_i(\epsilon, \vec{p})$$

Integration:

$$I_i(\epsilon, \vec{p}) = \int d^D \ell d^D \tilde{\ell} \frac{n_i(\ell, \tilde{\ell})}{\ell^2 (\ell - p_1)^2 \cdots (\tilde{\ell} - p_1 - \dots p_n)^2}$$

 \hookrightarrow gives 11-dimensional integrals at two loop five-point

• Differential equations method: [Kotikov 91; Bern, Dixon, Kosower 93; Remiddi 97, Gehrmann, Remiddi 99,...]

$$\frac{\partial}{\partial s_{ij}}I_k(\epsilon,\vec{p}) = \int d^D\ell d^D\tilde{\ell} \frac{\partial}{\partial s_{ij}} \left[\frac{n_k(\ell,\tilde{\ell})}{\ell^2(\ell-p_1)^2 \cdots (\tilde{\ell}-p_1-\cdots p_n)^2} \right] = \sum_{k,j} m_{kj}(\epsilon,\vec{p})I_j(\epsilon,\vec{p})$$

→ IBP reduction

- ← solve multi-variate differential equation & boundary conditions
- Integral functions in Laurent expansion in ϵ : $I_i(\epsilon, \vec{p}) = \sum e^k h_{ik}(\vec{p})$ $h_i(\vec{p}) \in \{1, \ln(s_{12}), \dots\} \dots$ integral functions
- Integrated amplitude:

$$A = \sum_{i \in \text{basis}} e^j d_{ij}(\vec{p}) h_{ij}(\vec{p})$$

Amplitude Computation

- Computational steps well established, but very complex:
 - number of diagrams/terms
 - number of variables in linear system: momenta & masses
 - multi-dimensional integration
- Keys to progress:
 - advance methods, new ideas
 - examples and structural understanding
- Simplicity of analytic results:

- indicates mathematical & physical properties of amplitudes, which may lead to better ways to compute

Numerical Amplitude Computation

 Numerical evaluations avoid problems of manipulating multi-variate expressions

- Numerical algorithms for one-loop amplitudes during `NLO revolution' [Blackhat, GoSam, Recola, OpenLoops, NJet, Recola,...]

- Challenges:
 - Numerical instabilities in integral reduction
 - Dimension dependence
- Solution:
 - Exact rational arithmetic \mathbb{Q} instead of floating point \mathbb{R} (actually: finite-field arithmetic \mathbb{F}) [\mathbb{Q} : common for checks; \mathbb{F} : vManteuffel, Schabinger 15]
 - Focus on simple rational functions
 - Functional reconstruction of analytic expressions [Peraro 16]

 $\vec{p} \to \mathbb{Q} \,, \quad \epsilon \to \mathbb{Q}$

Feynman diagrams Integral reduction using integration by parts (IBP) Sum of master integrals $A = \sum c_i(\epsilon, \vec{p}) I_i(\epsilon, \vec{p})$ Differential equations (DE) or numerical integration Integrated amplitude $A = \sum \epsilon^i d_{ik}(\vec{p}) h_{ik}(\vec{p})$

?

Laurent

expansion in ϵ

Numerical Amplitude Computation

• Rationality of integral coefficients in c

 $c(\epsilon) = \frac{n_0 + n_1 \epsilon + n_2 \epsilon^2 + \dots}{d_0 + d_1 \epsilon + d_2 \epsilon^2 + \dots}$

[Abreu, Febres Cordero, Ita, Jaquier, Page, Zeng 17]

similar to [Giele, Kunst, Melnikov 08]

- Rational function reconstructed in finite number of evaluations in ϵ :
 - Linear system for unknowns $\{n_i, d_i\}$:

. . .

 $c(\epsilon_1)(d_0 + d_1 \epsilon_1 + d_2 \epsilon_1^2 + \dots) = n_0 + n_1 \epsilon_1 + n_2 \epsilon_1^2 + \dots$ $c_i(\epsilon_2)(d_0 + d_1 \epsilon_2 + d_2 \epsilon_2^2 + \dots) = n_0 + n_1 \epsilon_2 + n_2 \epsilon_2^2 + \dots$

- Efficiency depends on number of evaluations, which in turn depends on degree of rational function

 $\vec{p} \to \mathbb{Q} \,, \quad \epsilon \to \{\epsilon_1, \epsilon_2, \dots\} \in \mathbb{Q}$

Feynman diagrams
Integral reduction using
integration by parts (IBP)
Sum of master integrals

$$A = \sum_{i} c_{i}(\epsilon, \vec{p}) I_{i}(\epsilon, \vec{p})$$
Inferential equations (DE)
or numerical integration

$$A = \sum_{i,k} e^{i} d_{ik}(\vec{p}) h_{ik}(\vec{p})$$

Laurent expansion in ϵ

Amplitude Reconstruction

· Rationality of integral coefficients in momenta

 $c(\epsilon, \vec{p}) = \frac{n_0(\vec{p}) + n_1(\vec{p})\,\epsilon + n_2(\vec{p})\,\epsilon^2 + \dots}{d_0(\vec{p}) + d_1(\vec{p})\,\epsilon + d_2(\vec{p})\,\epsilon^2 + \dots}$

[Peraro 16; Abreu, Febres Cordero, Ita, Jaquier, Page, Zeng, 17]

Laurent expansion

in ϵ

$$c(\epsilon, \vec{p})(d_0(\vec{p}) + d_1(\vec{p})\epsilon + d_2(\vec{p})\epsilon^2 + \dots) = n_0(\vec{p}) + n_1(\vec{p})\epsilon + n_2(\vec{p})\epsilon^2 + \dots$$
$$n_i(\vec{p}) = \sum_{\vec{\alpha}} n_{i,\vec{\alpha}} \left(s_{12}^{\alpha_1} s_{23}^{\alpha_2} \dots \right), \ s_{ij} = (p_i + p_j)^2,$$

similar for $d_i(\vec{p})$

 \hookrightarrow linear systems for numerical coefficients $n_{i,\vec{lpha}} \in \mathbb{Q}$

• Linear systems constructed from multiple numerical computations of $c_i(\epsilon, \vec{p})$

$$\vec{p} \to \{\vec{p}_1, \vec{p}_2, \dots\} \in \mathbb{Q}, \quad \epsilon \to \{\epsilon_1, \epsilon_2, \dots\} \in \mathbb{Q}$$

 \hookrightarrow Efficient and numerically stable analytic forms of amplitudes

$$\vec{p} \to \{\vec{p}_1, \vec{p}_2, \dots\} \in \mathbb{Q}, \quad \epsilon \to \{\epsilon_1, \epsilon_2, \dots\} \in \mathbb{Q}$$

Feynman diagrams
Integral reduction using
integration by parts (IBP)
Sum of master integrals

$$A = \sum_{i} c_{i}(\epsilon, \vec{p}) I_{i}(\epsilon, \vec{p})$$
Differential equations (DE)
or numerical integration
Integrated amplitude

$$A = \sum_{i,k} \epsilon^{i} d_{ik}(\vec{p}) h_{ik}(\vec{p})$$

Caravel Program

- C++ implementation of numerical-unitarity approach [Abreu, Dormans, Febres Cordero, HI, Kraus, Page, Pascual, Ruf, Sotnikov; '20]
 - \hookrightarrow Numerical values for integral functions in amplitude remainders
- Applications in QCD and gravity
- Public code: <u>https://gitlab.com/caravel-public</u>
- Auxiliary programs for input data:
 - Qgraf, Mathematica
 - Computational algebraic geometry & Singular [Decker, Greuel, Pfister, Schönemann]

- Contributors:
 - FSU group with Febres Cordero, Figueiredo, ...
 - Mexico: Kraus
 - CERN: Abreu
 - UZH/PSI: HI, Kuschke, Sotnikov
 - Ghent U.: Page
 - Edinburgh: De Laurentis

Structure — `Good' Integral Bases

- Analytic properties yield crucial simplifications in expressions:
 - Good integral bases lead to factorisation

 $c(\epsilon, \vec{p}) = \frac{\text{poly}_1(\epsilon, \vec{p})}{\text{poly}_2(\epsilon, \vec{p})} = \frac{\text{poly}_1(\epsilon, \vec{p})}{\text{poly}_2(\epsilon) \text{ poly}_3(\vec{p})}$

 \hookrightarrow universal poly₂(ϵ) simplifies reconstruction

- Canonical kinematic denominators:

 $c(\epsilon, \vec{p}) = \frac{\text{poly}_1(\epsilon, \vec{p})}{\text{poly}_2(\epsilon) \prod_i W_i^{m_i}(\vec{p})}$

 $W_i(\vec{p})$... `letters' associated to integral

 \hookrightarrow denominators require to obtain integer exponents m_i

Factorisation properties simplify reconstruction and improve numerical stability

[observed in computations, e.g. Tancredi, Melnikov; recently: Usovitsch 20; Smirnov, Smirnov 20]

[Abreu, Dormans, Febres Cordero, Ita, Page '18] Laurent expansior

in ϵ

$$\vec{p} \to \{\vec{p}_1, \vec{p}_2, \dots\} \in \mathbb{Q} \,, \quad \epsilon \to \{\epsilon_1, \epsilon_2, \dots\} \in \mathbb{Q}$$

Feynman diagrams
Integral reduction using
integration by parts (IBP)
Sum of master integrals

$$A = \sum_{i} \frac{\tilde{c}_{i}(\epsilon, \vec{p})}{\hat{c}_{i}(\epsilon) \prod_{j} W_{j}(\vec{p})} I_{i}(\epsilon, \vec{p})$$
Inferential equations (DE)
or numerical integration

$$A = \sum_{i,k} \epsilon^{i} d_{ik}(\vec{p}) h_{ik}(\vec{p})$$

Structure – Function Bases

- · Integral coefficients very complicated
 - only finite orders in *c*-expansion needed
 - subtract universal IR/UV poles and reconstruct finite remainders

 $A \rightarrow R = \sum_{i} \frac{e_i(\vec{p})}{\prod_j W_j^{m_i}(\vec{p})} h_i(\vec{p})$

• Relations after *expansion*

$$\Rightarrow \bigcirc \checkmark \sim \Rightarrow \bigcirc \checkmark \sim \Rightarrow \bigcirc \checkmark \sim r_0 + r_1 \epsilon \ln(s) + r_2 \epsilon^2 \ln^2(s) + \dots$$

- \hookrightarrow cancellations and simplification
- Reconstruct polynomials $e_i(\vec{p})$

 $\vec{p} \to \{\vec{p}_1, \vec{p}_2, \dots\} \in \mathbb{Q}\,, \quad \epsilon \to \{\epsilon_1, \epsilon_2, \dots\} \in \mathbb{Q}$

Feynman diagrams

Integral reduction using integration by parts (IBP)

Sum of master integrals

$$A = \sum_{i} \frac{\tilde{c}_{i}(\epsilon, \vec{p})}{\hat{c}_{i}(\epsilon) \prod_{j} W_{j}(\vec{p})} I_{i}(\epsilon, \vec{p})$$

$$I$$

$$Differential equations (DE)$$
or numerical integration
$$I$$

$$Integrated amplitude$$

$$A \to R = \sum_{i} \frac{e_{i}(\vec{p})}{\prod_{j} W_{j}^{m_{i}}(\vec{p})} h_{i}(\vec{p})$$

Laurent

expansior in ϵ

Structure – Regularity

$$A \to R = \sum_{i} \frac{e_i(\vec{p})}{\prod_j W_j^{m_j}(\vec{p})} h_i(\vec{p})$$

- Simplifications:
 - Regularity of amplitudes/remainders in phase space
 - Many of poles in $W_j(\vec{p}) = 0$ unphysical and cancel \implies correlations between numerator polynomials $e_j(\vec{p})$
- Many advanced ideas for reconstruction:
 - Univariate/multivariate partial fractions [Badger, Hartanto, Zoia, 21]
 - Choice of variables, e.g. spinor helicity
 - p-adic numbers [Page, De Laurentis 22; Chawdhry 23] see talk by Chawdhry
 - Reconstruction programs: FireFly [Klappert, Lange 19]

- Example: planar two-loop four-parton + W-boson amplitudes [Abreu, Febres Cordero, Ita, Klinkert, Page, Sotnikov 22]
 - Observe factor-50 reduction of needed evaluations

g ത്തുത്ത	ogooo (VZĒ			
ദ യുത്ത ഉ		w _l	Start		Factor-50 reduction
	4				
			Max Ansat	z Size	Max Non-Zero Terms
$\mathcal{R}_{ m g}$	$p_5 \parallel p_i$	—K—	Common Denominator	Partial Fractioning	Result
	1	58	5500 k	180 k	37 k
$+- N_{f}^{0}$	2	67	7000 k	480 k	$110\mathrm{k}$
-	3	67	$5900\mathrm{k}$	$380\mathrm{k}$	90 k

Application: Five-Parton Two-Loop Amplitudes

- Computed and validated by two groups
 - Feynman diagrams [Agarwal, Buccioni, Devoto, Gambuti, von Manteuffel, Tancredi '23]

- Numerical unitarity [De Laurentis, HI, Klinkert, Sotnikov '23], methods details to appear [De Laurentis, HI, Page, Sotnikov '23]. — discussed here

Coefficient Functions

· Basis of functions

$$R = \sum_{j} r_{j} h_{j} = \sum_{i \in \text{basis}, j} r_{i} M_{ij} h_{j} \qquad M_{ij} \in \mathbb{Q}$$

with minimal complexity. Complexity measure is mass dimension of coefficient numerators \mathcal{N}_{m} , in common denominator form,

$$r_m(\lambda, \tilde{\lambda}) = \sum_i \frac{\mathcal{N}_m(\lambda, \tilde{\lambda})}{\prod_j W_j^{m_i}(\lambda, \tilde{\lambda})}$$

• Basis change to simplify coefficient: [see also Abreu, Dormans, Febres Cordero, Ita, Page '18]

$$\tilde{r}_i = \sum_{j \in \text{basis}} O_{ij} r_j$$

Helicity	$\dim(\mathrm{VS}(\mathcal{P}))$	LCD ansatz size			
remainder	$\operatorname{dim}(\operatorname{VB}(\mathcal{H}))$	before basis chang	ge after basis change		
$R^{(2),(2,0)}_{+++}$	31	21,910	N/A		
$R^{(2),(2,0)}_{++-+-}$	54	$54,\!148$	N/A		
$R^{(2),(1,0)}_{+++}$	274	163,635	14,093		
$R^{(2),(1,0)}_{+-++-}$	270	$241,\!156$	14,552		
$R^{(2),(1,0)}_{+++}$	203	82,180	25,620		
$R^{(2),(1,1)}_{+++}$	31	21,910	N/A		
$R^{(2),(1,1)}_{++-+-}$	54	54,148	N/A		
$R^{(2),(0,1)}_{+++}$	226	118,880	4,108		
$R^{(2),(0,1)}_{+-++-}$	240	209,018	N/A		
$R^{(2),(0,1)}_{+++}$	157	76,845	8,840		
$R^{(2),(-1,1)}_{+++}$	25	5,320	N/A		
$R^{(2),(-1,1)}_{++-+-}$	35	9,384	N/A		

Coefficient Functions

- Key structures for constructing basis change:
 - Numerator degree of common denominator form linked to denominator letters

$$r_{i} = \frac{c_{i1}}{x} + \frac{c_{i2}}{x+y} = \frac{d_{i} + d_{i}^{x}x + d_{i}^{y}y}{x(x+y)} \longrightarrow \tilde{r}_{1} = \frac{c_{1}}{x}, \quad \tilde{r}_{2} = \frac{c_{2}}{x+y}$$

- Residues for vanishing letters are correlated between coefficients, since spurious nominator poles have to cancel in amplitude

 \hookrightarrow basis change constructed to de correlate residues

Correlation of Residues

· Laurent expansion around zeros of letters on univariate slices

$$\lambda_i = \lambda_i(t), \quad \tilde{\lambda_i} = \tilde{\lambda_i}(t)$$
$$r_i = \sum_{m=1}^{q_{ik}} \frac{e_{im}^k}{(t - t_{W_k})^m} + \mathcal{O}(t - t_{W_k})$$

• Transforms to

$$\tilde{r}_{i} = \sum_{m=1}^{q_{ik}} \frac{\tilde{e}_{im}^{k}}{(t - t_{W_{k}})^{m}} + \mathcal{O}(t - t_{W_{k}}), \quad \tilde{e}_{jm} = O_{ij}e_{jm}$$

· Impose that the leading residues vanishes,

$$\sum_{j} O_{ij} e_{jq_k} = 0$$

 $\hookrightarrow \mathsf{Pole} \ \mathsf{reduced}$

- Intersection of null spaces to remove maximal number of leading residues $\{e_{jq_k}\}_j$ in coefficient functions
- Numerical analysis: combining numerical data from multiple slices

Quark Amplitudes from Gluon Amplitudes

- · Ansatz for coefficient functions
 - 2q3g and 4q1g amplitudes
 - Similar cancellation mechanisms and pole structure as gluon amplitudes
 - Coefficients differ from gluon functions by phase weight:

$$|i\rangle \rightarrow t |i\rangle, \quad |i] \rightarrow \frac{1}{t} |i]$$

← construct Ansatz by multiplying with phase-weight factors similar to supersymmetry Ward Identities

• Example

$$\tilde{r}_{73}(q^+, q^-, g^+, g^+, g^-) = \frac{\langle 14 \rangle}{\langle 24 \rangle} \cdot \tilde{r}_{18}^{--}(g^+, g^-, g^+, g^+, g^-) \quad \text{with} \quad \tilde{r}_{18}^{--}(g^+, g^-, g^+, g^+, g^-) = \frac{[1,4]\langle 25 \rangle \langle 45 \rangle}{\langle 24 \rangle [24] \langle 34 \rangle^2}$$

• Validation with numerical evaluation from Caravel program: obtain 50% of 2q3g functions and 90% of 4q1g functions for free

[De Laurentis, HI, Sotnikov [2311.18752]

				17
			16	$\bar{r}_{114}^{} = \frac{[12]^2 [23]^2}{(13)[15][24]^2 [35]} + \frac{(45)^3 (2]1+5[2]}{(13)(15)(23)(24)^2 [24]} + \frac{(45)^3 (2)(1+5)(2)}{(13)(15)(23)(24)^2 [24]} + \frac{(45)^3 (2)(1+5)(2)}{(13)(15)(15)(24)(24)^2 [24]} + \frac{(45)^3 (24)^2 (24)^2 [24]}{(13)(15)(15)(24)(24)^2 [24]} + \frac{(45)^3 (24)^2 (24)^2 [24]}{(13)(15)(15)(24)(24)(24)^2 [24]} + \frac{(45)^3 (24)^2 (24)^2 [24]}{(13)(15)(15)(15)(15)(15)(15)(15)(15)(15)(15$
	$\bar{\tau}^{}_{58} = \frac{[12]\langle 45\rangle^2 [23]}{(12)[24]\langle 34\rangle \langle 2 1+}$	$\bar{r}_{77}^{} = \frac{(34)(45)35^2}{(13)^2(23)^2(3)(1+2[3])}$	$\bar{r}_{92}^{} = \frac{[23]^2 (25) (24)^2}{(12)^2 (23) (35) [35]^2} +$	$\frac{-[12](45)^2(25)[25]}{(13)(23)(24)^2[24]^2}+$
Aş	opendix C: Five-gluon MHV basis I	functions	$\frac{2(14)(23)(25)^{-}(24)}{(12)^{2}(23)(35)(35)}$	$\frac{ 23 ^2 \langle 45 \rangle^* \langle 5 1+3 5 }{\langle 13 \rangle \langle 15 \rangle \langle 24 \rangle^2 24 ^2 35 } +$
$\bar{r}_1^{}=\frac{\langle 45\rangle^2}{\langle 12\rangle \langle 13\rangle \langle 23\rangle}$	$\bar{r}_{33}^{} = \frac{[13]^2 \langle 45 \rangle}{\langle 23 \rangle \langle 25 \rangle [35] [45]}$	$\bar{r}_{33}^{} = \frac{(25)^3 [23]^2}{(12)^2 (23) [34]^2 (35)}$	$\bar{r}_{g_3}^{} = \frac{2(25)^3(25)(14)(24)}{(12)^3(23)^2(35)(35)} + -(25)^3(25)^2(25)^2(24)^2$	$\frac{-[12][23]^{2}[13](34)}{(13)[15][24][35](3]1+5]3]} + \\ -2[12]^{2}[23]^{2}[13]$
$\bar{r}_2^{}=\frac{\langle 45\rangle^3}{\langle 12\rangle^2\langle 34\rangle\langle 35\rangle}$	$\bar{r}_{21}^{} = \frac{[23](45)^2}{\langle 12 \rangle \langle 13 \rangle \langle 35 \rangle [35]}$	$\bar{r}_{40}^{} = \frac{\langle 25 \rangle^3 [25]^2}{\langle 12 \rangle^2 \langle 23 \rangle \langle 35 \rangle [45]^2}$	$\frac{-(23)^2}{(12)^2(23)^3(35)(35)^2}$ = $-(12)(23)^2(14)(23)$,	$\frac{[15][24]^2[35](3]1+5[3]^+}{-[23]^2[13](45)^2[15]}$
$\hat{r}_{3}^{} = \frac{\langle 45 \rangle^{3}}{\langle 12 \rangle \langle 15 \rangle \langle 23 \rangle \langle 34 \rangle}$	$P_{22}^{} = \frac{[13][23]^2}{(12)[25][34][45]}$	$\bar{r}_{41}^{} = \frac{[12]\langle 35 \rangle \langle 15 \rangle \langle 14 \rangle}{\langle 12 \rangle \langle 13 \rangle^3 [14]}$	$(13)^3$ $($	$\frac{(24)}{(23)^2} \frac{(24)(3)(3)(3)(3)(3)}{(32)^2} + \frac{-2[23]^3(34)(35)}{(13)^2} + \frac{-2[23]^3(34)(35)}{(13)^2} + -2[23]^3(34)(35)(3)(3)(35)(3)(35)(3)(35)(3)(35)(3)(35)(35$
$\bar{r}_{4}^{} = \frac{[14][12][35]}{(23)[45]^3}$	$\bar{\tau}_{23}^{} = \frac{[12]^2 \langle 45 \rangle}{\langle 13 \rangle [15] \langle 23 \rangle [24]}$	$\bar{r}_{42}^{} = \frac{(45)^3[23]}{(14)(15)(23)(24)[24]}$	$r_{95}^{} = \frac{2(25][15](45)^2[34]^2}{(12)(45)^5[1+2)5^{12}} +$	$\frac{ 23 ^2\langle 35\rangle\langle 34\rangle\langle 14\rangle 13 ^2}{(13)\langle 24\rangle 24 35\rangle\langle 3 1+5 3 ^2}+$
$r_5^{} = \frac{\left(45 \right)^2 \left(24 \right)}{\left(12 \right)^2 \left(23 \right) \left(34 \right)}$	$\vec{r}_{24}^{} = \frac{\langle 25 \rangle \langle 34 \rangle^2 [12]}{\langle 13 \rangle \langle 23 \rangle^3 [25]}$	$\bar{r}_{43}^{} = \frac{[35][15](35)(25)}{(12)(23)^2[45]^2}$	$\frac{3 35 (15) 12 (13) 45\rangle}{(12) 45 (5 1+2 5 ^2}$	$\frac{3[12][23]^3[13](35)}{[24]^2[35](31+5]3]^2}$ + $3[23]^3[13]^2(34)(35)$.
$\tilde{r}_6^{} = \frac{\langle 15 \rangle \langle 14 \rangle \langle 45 \rangle}{\langle 12 \rangle^2 \langle 13 \rangle^2}$	$\bar{r}_{25}^{} = \frac{(25)[14][25]^2}{(13)(23)[45]^3}$	$\hat{r}_{44}^{} = \frac{ 25 \langle 25 \rangle^2 [13]}{\langle 12 \rangle^2 [14] \langle 23 \rangle [45]}$	$\bar{\tau}_{961}^{} = \frac{2[34][14][35][25](45)}{(12)[45]^3(5]1+2[5]} + (34]^2[15][25](45)^2$	[24[33](3]1+5[3] ³ + -3[23] ³ [13](34)(35) ² (39)(34)(91)(34)(35) ²
$\bar{r}_7^{} = \frac{[12]^2 \langle 45 \rangle}{\langle 34 \rangle \langle 35 \rangle [45]^2}$	$\dot{r}_{26}^{} = \frac{[13](45)^3}{(13)[14](15)(24)^2}$	$\hat{r}_{45}^{} = \frac{[12]\langle 45 \rangle^2 [13]}{(12)(14)[14]^2 \langle 34 \rangle}$	$\frac{(12)[45]^2(5[1+2]5]^2}{f_{rer}} = \frac{-(34)^2(45)[34][12]}{+}$	$\bar{\tau}_{115}^{} = \frac{-2/3(24)^2(24)(45)(14)^2}{(14)^2} +$
$\vec{r}_8^{} = \frac{[25][14]^2[35]}{(23)[45]^4}$	$\bar{r}_{27}^{} = \frac{[13]^3[25]}{\langle 12 \rangle [15]^2[34][45]}$	$P_{46}^{} = \frac{\langle 14 \rangle [34] \langle 45 \rangle^2}{(12)^2 (13) (24) [24]}$	(13)(14)[15](23)(35)[45] 2(45) ² [14][13] (14)[15](25) ² (35)[45]	$(12)(13)^{\circ}(35)(35)^{2}$ $\frac{2/3(24)^{2}(23)(24)^{2}(25)(14)}{(13)^{3}(35)(35)^{3}(45)} +$
$\vec{r}_9^{} = \frac{[23]^2 \langle 34 \rangle}{\langle 13 \rangle \langle 14 \rangle [45]^2}$	$\bar{r}_{26}^{} = \frac{[12](45)^3}{(14)(24)(35)^2[45]}$	$\bar{r}_{47}^{} = \frac{\langle 34 \rangle [13]^2 \langle 45 \rangle}{\langle 23 \rangle^2 [35] \langle 3 1+5 3]}$	$\bar{\tau}_{98}^{-} = \frac{[14][15](45)(24)[24]}{m^2(4)^{1/2}(4)(4)(4)} +$	$\frac{-[23]^3[13](5][1+3]5]}{(13)[24][34](35)[35]^3} +$
$\bar{r}_{10}^{} = \frac{[13]^2(34)(24)}{(23)^3[35]^2}$	$\vec{r}_{20}^{} = \frac{(25)(14)^2(24)(45)}{(12)^4(34)^2}$	$\hat{r}_{48}^{} = \frac{[13](14)^2(15)[25]}{(12)(13)^3[35]^2}$	$\frac{(23)^{2}[43]^{2}[41]^{2}[41]^{2}[41]^{2}[42]^{2}[42]^{2}[42]^{2}[42]^{2}[41]^{2}[4$	$\frac{5/3(24)[23][24](14)^2[13]}{(12)(13)^2(35)[35]^3} + \frac{5/6(23)(21)+3(2)(45)(14)}{(12)(14)}$
$\bar{r}_{11}^{} = \frac{\langle 34 \rangle \langle 14 \rangle \langle 45 \rangle^2}{\langle 13 \rangle^3 \langle 24 \rangle^2}$	$\vec{r}_{30}^{} = \frac{[14]\langle 15 \rangle \langle 14 \rangle^2}{\langle 12 \rangle^2 \langle 13 \rangle^2 [45]}$	$r_{49}^{} = \frac{[12]^2[23]^2\langle 45 \rangle}{[24][25]\langle 2 1+5 2]^2}$	$r_{gg}^{} = \frac{-[12]\langle 24\rangle [34](45\rangle}{(12)\langle 23\rangle (25)[25][45]} + \frac{-[12]\langle 23\rangle (25)[25][45]}{-[12]\langle 24\rangle (25)\langle 25\rangle (25)[45]} + \frac{-[12]\langle 24\rangle (25)\langle 25\rangle (25)[45]}{-[12]\langle 24\rangle (25)\langle 25\rangle (25)[45]} + \frac{-[12]\langle 24\rangle (25)\langle 25\rangle (25)[45]}{-[12]\langle 24\rangle (25)\langle 25\rangle (25)[45]} + \frac{-[12]\langle 24\rangle (25)\langle 25\rangle (25)[45]}{-[12]\langle 24\rangle (25)\langle 25\rangle (25)[45]} + \frac{-[12]\langle 24\rangle (25)\langle 25\rangle (25)[45]}{-[12]\langle 24\rangle (25)\langle 25\rangle (25)[45]} + \frac{-[12]\langle 24\rangle (25)\langle 25\rangle (25)[45]}{-[12]\langle 24\rangle (25)\langle 25\rangle (25)[45]} + \frac{-[12]\langle 24\rangle (25)\langle 25\rangle (25)[45]}{-[12]\langle 24\rangle (25)\langle 25\rangle (25)[45]} + \frac{-[12]\langle 24\rangle (25)\langle 25\rangle (25)[45]}{-[12]\langle 24\rangle (25)\langle 25\rangle (25)[45]} + \frac{-[12]\langle 24\rangle (25)\langle 25\rangle (25)[45]}{-[12]\langle 24\rangle (25)\langle 25\rangle (25)[45]} + \frac{-[12]\langle 24\rangle (25)\langle 25\rangle (25)[45]}{-[12]\langle 24\rangle (25)\langle 25\rangle (25)[45]} + \frac{-[12]\langle 24\rangle (25)\langle 25\rangle (25)[45]}{-[12]\langle 24\rangle (25)\langle 25\rangle (25)[45]} + \frac{-[12]\langle 24\rangle (25)\langle 25\rangle (25)[45]}{-[12]\langle 24\rangle (25)\langle 25\rangle (25)[45]} + \frac{-[12]\langle 24\rangle (25)\langle 25\rangle (25)[45]}{-[12]\langle 24\rangle (25)\langle 25\rangle (25)[45]} + \frac{-[12]\langle 24\rangle (25)\langle 25\rangle (25)[45]}{-[12]\langle 24\rangle (25)\langle 25\rangle (25)[45]} + \frac{-[12]\langle 24\rangle (25)\langle 25\rangle (25)[45]}{-[12]\langle 24\rangle (25)\langle 25\rangle (25)[45]} + \frac{-[12]\langle 24\rangle (25)\langle 25\rangle (25)[45]}{-[12]\langle 24\rangle (25)\langle 25\rangle (25)[45]} + \frac{-[12]\langle 24\rangle (25)\langle 25\rangle (25)[45]}{-[12]\langle 24\rangle (25)\langle 25\rangle (25)[45]} + \frac{-[12]\langle 24\rangle (25)\langle 25\rangle (25)[45]}{-[12]\langle 24\rangle (25)\langle 25\rangle (25)[45]} + \frac{-[12]\langle 24\rangle (25)\langle 25\rangle (25)[45]}{-[12]\langle 24\rangle (25)\langle 25\rangle (25)[45]} + \frac{-[12]\langle 24\rangle (25)\langle 25\rangle (25)[45]}{-[12]\langle 24\rangle (25)\langle 25\rangle (25)[45]} + \frac{-[12]\langle 24\rangle (25)\langle 25\rangle (25)[45]}{-[12]\langle 24\rangle (25)\langle 25\rangle (25)[45]} + \frac{-[12]\langle 24\rangle (25)\langle 25\rangle (25)[45]}{-[12]\langle 24\rangle (25)\langle 25\rangle (25)[45]} + \frac{-[12]\langle 24\rangle (25)\langle 25\rangle (25)[45]}{-[12]\langle 24\rangle (25)\langle 25\rangle (25)[45]} + \frac{-[12]\langle 24\rangle (25)\langle 25\rangle (25)[45]}{-[12]\langle 24\rangle (25)\langle 25\rangle (25)[45]} + \frac{-[12]\langle 24\rangle (25)\langle 25\rangle (25)[45]}{-[12]\langle 24\rangle (25)\langle 25\rangle (25)[45]} + \frac{-[12]\langle 24\rangle (25)\langle 25\rangle (25)[45]}{-[12]\langle 24\rangle (25)\langle 25\rangle (25)[45]} + \frac{-[12]\langle 24\rangle (25)[45]}{-[12]\langle 24\rangle (25)[45]} + \frac{-[12]\langle 24\rangle (25)[45]} + \frac{-[12]\langle 24\rangle (25)[45]}{-[12]\langle 24\rangle (25)[45]} + \frac{-[12]\langle 24\rangle (25)[45]} + \frac{-[12]\langle 24\rangle (25)[45]} +$	(12)(13) ² (35)[35] ² 2/3[23][13](14)(2[5-4]2]
$\bar{r}_{12}^{}=\frac{\langle 34\rangle \langle 14\rangle \langle 35\rangle ^2}{\langle 13\rangle ^3 \langle 23\rangle ^2}$	$\bar{r}_{31}^{} = \frac{\langle 34 \rangle [12]^2 \langle 24 \rangle}{\langle 13 \rangle^2 [15]^2 \langle 23 \rangle}$	$\bar{r}_{50}^{} = \frac{(24)^2[12]^2(35)}{(23)^3[25](2]+5[2]}$	$(12)(25)(23)(45)(5)(45)(5)(45)^2$ $(35)(25)^2(15)(25)(45)^2$	$\frac{(12)(13)(35)[35]^2[45]}{(12)(25)^2[23][25]^2(14)}$ +
$\bar{r}_{13}^{}=\frac{\left<35\right>^3\left<14\right>^2}{\left<13\right>^4\left<23\right>\left<25\right>}$	$\bar{r}_{33}^{} = \frac{\langle 35 \rangle \langle 25 \rangle [23]^2}{\langle 12 \rangle^2 \langle 23 \rangle [24]^2}$	$\bar{r}_{31}^{} = \frac{\langle 45\rangle^2 [13]^2 \langle 14\rangle}{\langle 13\rangle \langle 25\rangle^2 \langle 34\rangle [35]^2}$	$r_{100} = {(12)^3(35)(5 1+2 5 ^2} + \frac{-3[35](25)^2(15)(14)(45)}{-3[35](25)^2(15)(14)(45)}$	$\frac{[23](25)[25](14)(45)}{(12)(13)^3(35)[35]^2}$ +
$\hat{\tau}_{14}^{} = \frac{[12][23]\langle 14 \rangle}{\langle 13 \rangle^2 [35][45]}$	$\bar{r}_{33}^{} = \frac{[13]\langle 34 \rangle \langle 35 \rangle^2}{\langle 13 \rangle^2 [14] \langle 23 \rangle^2}$	$\bar{r}_{32}^{} = \frac{[12]^2 \langle 45 \rangle^2 \langle 23 \rangle}{\langle 12 \rangle \langle 13 \rangle [14]^2 \langle 34 \rangle^2}$	$(12)^{+}(35)(5 1+2 5 $ $r_{} = \frac{34(45)^{2}(15)[14]}{+}$	$\frac{-1/2(25)(45)(25)^2(15)}{(12)(13)^2(35)(35)[45]} +$ $-1.2(25)(23)^2(35)(35)[45]$
$\tilde{r}_{15}^{} = \frac{(25)(45)[13]}{(12)^2[14](23)}$	$\bar{r}_{34}^{} = \frac{\langle 45 \rangle^2 [23]^2}{\langle 12 \rangle \langle 15 \rangle \langle 25 \rangle [25]^2}$	$\bar{r}_{53}^{} = \frac{(45)^2(15)[25]^2}{(13)(14)^2(35)[45]^2}$	$(23)^{2}[45](4 1+5 4]^{2}$ $-\frac{(24)[23](34)(45)[14]^{2}}{(23)^{2}[45](4 1+5 4]^{2}}$ +	(12) (13) [34] (35) [35] [45]
$\bar{r}_{14}^{} = \frac{ 15 \langle 45 \rangle \langle 25 \rangle}{\langle 12 \rangle \langle 23 \rangle^2 [45]}$	$\bar{r}_{33}^{} = \frac{[13]^2 \langle 45 \rangle^2}{\langle 13 \rangle [14] \langle 24 \rangle^2 [34]}$	$\bar{r}_{54}^{} = \frac{[12]^2 \langle 35 \rangle [23]^3}{[24]^2 [25] \langle 2 1+5 2]^2}$	$(12345 \rightarrow -32154)$	
$\bar{r}_{17}^{-} = \frac{(35)[13](24)}{(12)(23)^2[45]}$	$\vec{r}_{36}^{} = \frac{\langle 14 \rangle [13]^2 \langle 45 \rangle}{\langle 12 \rangle^2 \langle 15 \rangle [15]^2}$	$\bar{r}_{35}^{} = \frac{\langle 34 \rangle [23] \langle 45 \rangle^2}{\langle 13 \rangle \langle 15 \rangle \langle 23 \rangle \langle 24 \rangle [25]}$		J
$\bar{r}_{18}^{} = \frac{[12]\langle 24 \rangle \langle 45 \rangle}{\langle 12 \rangle \langle 23 \rangle^2 [25]}$	$\vec{r}_{37}^{} = \frac{34^2(35)^2}{(13)^3(23)^2[14]}$	$\vec{r}_{56}^{} = \frac{[23][13](45)^3}{(15)(23)(25)[25][35]}$		
$\vec{r}_{19}^{} = \frac{[13]^2[23]}{\langle 23 \rangle [34] [35] [45]}$	$\bar{r}_{38}^{-} = \frac{\langle 45 \rangle \langle 24 \rangle^2 \langle 35 \rangle \langle 14 \rangle^2}{\langle 12 \rangle^4 \langle 34 \rangle^3}$	$\vec{r}_{57}^{} = \frac{\langle 25 \rangle [25] \langle 45 \rangle^2}{\langle 13 \rangle \langle 15 \rangle \langle 23 \rangle \langle 24 \rangle [45]}$		

Spinor-Helicity Results

- Gluon MHV rational functions fit on three pages of paper appendix.
- All rational functions fitted in a single finite field. Matrices M_{ij} and O_{ij} required multiple fields
- Size of full result dominated by matrices
- Can study analytic properties of amplitudes: no tr_5 singularities, no overlapping co-planar poles $[i | j + k | i \rangle$
- · Use discrete symmetries to obtain generating set of functions

Gluon helicities	Vector-space dimension	Generating set size
+++++	24	3
+ + + + -	440	33
+++	937	115

Particle Helicities	Vector-space dimension	Generating set size
$\overline{u^+ ar{u}^- g^+ g^+}$ g^+	424	91
$u^+ \bar{u}^- g^+ g^+ g^-$	844	449
$u^+ ar u^- d^+ ar d^- g^-$	435	124

• 35k numerical evaluations: slices and 5k random points

Results

• C++ code for 2-loop remainders

- gitlab.com/five-point-amplitudes/FivePointAmplitudescpp

- Analytic expressions
 - Spinor-helicity functions printed in papers
 - zenodo.org/records/10142295 and

zenodo.org/records/10231547

· Stable and fast evaluations for cross sections

[De Laurentis, HI, Klinkert, Sotnikov [2311.100086]

[De Laurentis, HI, Sotnikov [2311.18752]

Conclusions

- Real demand for precision predictions for ongoing and future LHC physics program
- Discussed status of NNLO five-point processes and some key methods
- Progress relies on advancing analytic understanding: differential equation method, integral evaluation, amplitude computation, integral reduction
- Key recent methods: exact numerical evaluations (finite fields), functional reconstruction & understanding of interplay of integral functions and coefficients

- One-mass five point processes in reach given integrals and reconstruction methods
- New amplitudes computations and new formal developments are the way to go for broad availability of NNLO results.

