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Motivation
• The precise measurement of  is one of the most 

important problems in QCD
αs

Asymptotic freedom: (50+1) years of QCD

dαs(μ)
d ln μ

= β (αs(μ)), β(α) = − 2α [( αs

4π ) β0 + ⋯]
⇒ αs(μ) = αs(μ0)[1 +

αs(μ0)
2π

β0 ln
μ
μ0 ]

−1

[Gross, Wilczek, Politzer, 1973]

• PDG 2023 average: αs(mZ) = 0.1180 ± 0.0009
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Figure 9.2: Summary of determinations of –s(m2

Z) with uncertainty in the seven sub-fields as
discussed in the text. The yellow (light shaded) bands and dotted lines indicate the pre-average
values of each sub-field. The dashed line and blue (dark shaded) band represent the final world
average value of –s(m2

Z). The “*” symbol within the “hadron colliders” sub-field indicates a deter-
mination including a simultaneous fit of PDFs.

22nd December, 2023

[Huston, Rabbertz, Zanderighi, 

PDG QCD review


2312.14015]
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PDF fit:                            

 collision:                


Hadron collision:             

Lattice FLAG:                  

0.1161 ± 0.0022
e+e− 0.1189 ± 0.0037

0.1168 ± 0.0027
0.1184 ± 0.0008

• Discrepancy between different measurements:
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• For  colliders, different treatments of power corrections lead to different result.e+e−
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Motivation: e+e−

[Huston, Rabbertz, 
Zanderighi, 


PDG QCD review, 

2312.14015]

• However, thrust with only dijet fit range still give the same result with good stability 
[Benitez-Rathgeb, Hoang, Mateu, Stewart, Vita, 2024]

EEC: MC power 
corrections

Thrust/C 
parameter: 
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corrections
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usually is estimated as discussed in Sec. 9.2.4.
• The size of non-perturbative e�ects. Su�ciently inclusive quan-

tities, like the e
+

e
≠ cross section to hadrons, have small non-

perturbative contributions ≥ �4
/Q

4. Others, such as event-
shape distributions, have typically contributions ≥ �/Q.

• The scale at which the measurement is performed. An uncer-
tainty ” on a measurement of –s(Q2), at a scale Q, translates
to an uncertainty ”

Õ = (–2
s(M2

Z)/–
2
s(Q2)) · ” on –s(M2

Z). For
example, this enhances the already important impact of pre-
cise low-Q measurements, such as from · decays, in combi-
nations performed at the MZ scale.

The selection of results from which to determine the world average
value of –s(M2

Z) is restricted to those that are

- published in a peer-reviewed journal at the time of writing this
report,

- based on the most complete perturbative QCD predictions of
at least NNLO accuracy,

- accompanied by reliable estimates of all experimental and the-
oretical uncertainties.

Numerous measurements from jet production in DIS and at
hadron colliders are still excluded from the average presented here,
because the determination of –s(M2

Z) from those data sets has not
yet been upgraded to NNLO. We expect that this will change in
the near future. Still, the NLO analyses will be discussed in this
Review, as they are important ingredients for the experimental
evidence of the energy dependence of –s, i.e. for asymptotic free-
dom, one of the key features of QCD.

In order to calculate the world average value of –s(M2
Z), we

apply, as in earlier editions, an intermediate step of pre-averaging
results within the sub-fields now labeled “Hadronic · decays and
low Q

2 continuum” (· decays and low Q
2), “Heavy quarkonia

decays” (QQ̄ bound states), “PDF fits” (PDF fits), “Hadronic
final states of e

+
e

≠ annihilations” (e+
e

≠ jets & shapes), “Ob-
servables from hadron-induced collisions” (hadron colliders), and
“Electroweak precision fit” (electroweak) as explained in the fol-
lowing sections. For each sub-field, the unweighted average of all
selected results is taken as the pre-average value of –s(M2

Z), and
the unweighted average of the quoted uncertainties is assigned to
be the respective overall error of this pre-average. For the “Lat-
tice QCD” (lattice) sub-field we do not perform a pre-averaging;
instead, we adopt for this sub-field the average value and uncer-
tainty derived by the Flavour Lattice Averaging Group (FLAG)
in Ref. [542].

Assuming that the six sub-fields (excluding lattice) are largely
independent of each other, we determine a non-lattice world aver-
age value using a ‘‰2

averaging’ method. In a last step we perform
an unweighted average of the values and uncertainties of –s(M2

Z)
from our non-lattice result and the lattice result presented in the
FLAG2019 report [542].

9.4.1 Hadronic · decays and low Q2 continuum:
Based on complete N3LO predictions [32], analyses of the ·

hadronic decay width and spectral functions have been performed,
e.g. in Refs. [32,543–548], and lead to precise determinations of –s

at the energy scale of M
2
· . They are based on di�erent approaches

to treat perturbative and non-perturbative contributions, the im-
pacts of which have been a matter of intense discussions for a long
time, see e.g. Refs. [547–550]. In particular, in · decays there is
a significant di�erence between results obtained using fixed-order
(FOPT) or contour-improved perturbation theory (CIPT),

such that analyses based on CIPT generally arrive at larger
values of –s(M2

· ) than those based on FOPT. In addition, some
results show di�erences in –s(M2

· ) between di�erent groups using
the same data sets and perturbative calculations, most likely due
to di�erent treatments of the non-perturbative contributions, cf.

Ref. [548] with Refs. [547,551]. References [552,553] question the
validity of using a truncated OPE at Q

2 = m
2
· based on the

disagreement found between experimental values of the spectral
moments and the theory representations based on the truncated
OPE fits at Q

2
> m

2
· .

Figure 9.2: Summary of determinations of –s(M2
Z) from the

seven sub-fields discussed in the text. The yellow (light shaded)
bands and dotted lines indicate the pre-average values of each sub-
field. The dashed line and blue (dark shaded) band represent the
final world average value of –s(M2

Z). The “*” symbol within the
“hadron colliders” sub-field indicates a determination including a
simultaneous fit of PDFs.

We determine the pre-average value of –s(M2
Z) for this sub-

field from studies that employ both FOPT and CIPT expansions,
and that account for the di�erence among these in the quoted
overall uncertainty. If necessary, we perform ourselves the aver-
aging of FOPT and CIPT numbers and the quadratic addition
of half their di�erence to the uncertainty. As the results from
Refs. [32, 550, 551] are not totally independent, we pre-average
as a first step the three results –s(M2

Z) = 0.1202 ± 0.0019 [32],
–s(M2

Z) = 0.1199 ± 0.0015 [551], and –s(M2
Z) = 0.1197 ± 0.0015

[550] to –s(M2
Z) = 0.1199 ± 0.0016 (summarized as BDP2008-

16 in Fig. 9.2). Subsequently, this is combined with –s(M2
Z) =

0.1162 ± 0.0025 [554], and –s(M2
Z) = 0.1182 ± 0.0015 [555], which

replaces the previous result from Ref. [548]. We also include
the result from · decay and lifetime measurements, obtained in
Sec. Electroweak Model and constraints on New Physics of the
2020 edition of this Review [537], –s(M2

Z) = 0.1170+0.0019
≠0.0017. The

latter result, being a global fit of · data, involves some correla-
tions with the other extractions of this category. However, since
we perform an unweighted average of the central value and uncer-
tainty, the e�ects of the potential correlations are reduced.

All these results are summarized in Fig. 9.2. Determining the
unweighted average of the central values and their overall uncer-
tainties, we arrive at –s(M2

Z) = 0.1178 ± 0.0019, which we will
use as the first input for determining the world average value of
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Figure 9.2: Summary of determinations of –s(m2

Z) with uncertainty in the seven sub-fields as
discussed in the text. The yellow (light shaded) bands and dotted lines indicate the pre-average
values of each sub-field. The dashed line and blue (dark shaded) band represent the final world
average value of –s(m2

Z). The “*” symbol within the “hadron colliders” sub-field indicates a deter-
mination including a simultaneous fit of PDFs.
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• For  colliders, different treatments of power corrections lead to different result.e+e−
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• Need a better understanding of power corrections (MC vs analytic models) and why 
the latter leads to a lower value of 


• There is also another observable, heavy jet mass, that 


• gives very low  when including the power corrections


• has very different tail behavior compared to thrust
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usually is estimated as discussed in Sec. 9.2.4.
• The size of non-perturbative e�ects. Su�ciently inclusive quan-

tities, like the e
+

e
≠ cross section to hadrons, have small non-

perturbative contributions ≥ �4
/Q

4. Others, such as event-
shape distributions, have typically contributions ≥ �/Q.

• The scale at which the measurement is performed. An uncer-
tainty ” on a measurement of –s(Q2), at a scale Q, translates
to an uncertainty ”

Õ = (–2
s(M2

Z)/–
2
s(Q2)) · ” on –s(M2

Z). For
example, this enhances the already important impact of pre-
cise low-Q measurements, such as from · decays, in combi-
nations performed at the MZ scale.

The selection of results from which to determine the world average
value of –s(M2

Z) is restricted to those that are

- published in a peer-reviewed journal at the time of writing this
report,

- based on the most complete perturbative QCD predictions of
at least NNLO accuracy,

- accompanied by reliable estimates of all experimental and the-
oretical uncertainties.

Numerous measurements from jet production in DIS and at
hadron colliders are still excluded from the average presented here,
because the determination of –s(M2

Z) from those data sets has not
yet been upgraded to NNLO. We expect that this will change in
the near future. Still, the NLO analyses will be discussed in this
Review, as they are important ingredients for the experimental
evidence of the energy dependence of –s, i.e. for asymptotic free-
dom, one of the key features of QCD.

In order to calculate the world average value of –s(M2
Z), we

apply, as in earlier editions, an intermediate step of pre-averaging
results within the sub-fields now labeled “Hadronic · decays and
low Q

2 continuum” (· decays and low Q
2), “Heavy quarkonia

decays” (QQ̄ bound states), “PDF fits” (PDF fits), “Hadronic
final states of e

+
e

≠ annihilations” (e+
e

≠ jets & shapes), “Ob-
servables from hadron-induced collisions” (hadron colliders), and
“Electroweak precision fit” (electroweak) as explained in the fol-
lowing sections. For each sub-field, the unweighted average of all
selected results is taken as the pre-average value of –s(M2

Z), and
the unweighted average of the quoted uncertainties is assigned to
be the respective overall error of this pre-average. For the “Lat-
tice QCD” (lattice) sub-field we do not perform a pre-averaging;
instead, we adopt for this sub-field the average value and uncer-
tainty derived by the Flavour Lattice Averaging Group (FLAG)
in Ref. [542].

Assuming that the six sub-fields (excluding lattice) are largely
independent of each other, we determine a non-lattice world aver-
age value using a ‘‰2

averaging’ method. In a last step we perform
an unweighted average of the values and uncertainties of –s(M2

Z)
from our non-lattice result and the lattice result presented in the
FLAG2019 report [542].

9.4.1 Hadronic · decays and low Q2 continuum:
Based on complete N3LO predictions [32], analyses of the ·

hadronic decay width and spectral functions have been performed,
e.g. in Refs. [32,543–548], and lead to precise determinations of –s

at the energy scale of M
2
· . They are based on di�erent approaches

to treat perturbative and non-perturbative contributions, the im-
pacts of which have been a matter of intense discussions for a long
time, see e.g. Refs. [547–550]. In particular, in · decays there is
a significant di�erence between results obtained using fixed-order
(FOPT) or contour-improved perturbation theory (CIPT),

such that analyses based on CIPT generally arrive at larger
values of –s(M2

· ) than those based on FOPT. In addition, some
results show di�erences in –s(M2

· ) between di�erent groups using
the same data sets and perturbative calculations, most likely due
to di�erent treatments of the non-perturbative contributions, cf.

Ref. [548] with Refs. [547,551]. References [552,553] question the
validity of using a truncated OPE at Q

2 = m
2
· based on the

disagreement found between experimental values of the spectral
moments and the theory representations based on the truncated
OPE fits at Q

2
> m

2
· .

Figure 9.2: Summary of determinations of –s(M2
Z) from the

seven sub-fields discussed in the text. The yellow (light shaded)
bands and dotted lines indicate the pre-average values of each sub-
field. The dashed line and blue (dark shaded) band represent the
final world average value of –s(M2

Z). The “*” symbol within the
“hadron colliders” sub-field indicates a determination including a
simultaneous fit of PDFs.

We determine the pre-average value of –s(M2
Z) for this sub-

field from studies that employ both FOPT and CIPT expansions,
and that account for the di�erence among these in the quoted
overall uncertainty. If necessary, we perform ourselves the aver-
aging of FOPT and CIPT numbers and the quadratic addition
of half their di�erence to the uncertainty. As the results from
Refs. [32, 550, 551] are not totally independent, we pre-average
as a first step the three results –s(M2

Z) = 0.1202 ± 0.0019 [32],
–s(M2

Z) = 0.1199 ± 0.0015 [551], and –s(M2
Z) = 0.1197 ± 0.0015

[550] to –s(M2
Z) = 0.1199 ± 0.0016 (summarized as BDP2008-

16 in Fig. 9.2). Subsequently, this is combined with –s(M2
Z) =

0.1162 ± 0.0025 [554], and –s(M2
Z) = 0.1182 ± 0.0015 [555], which

replaces the previous result from Ref. [548]. We also include
the result from · decay and lifetime measurements, obtained in
Sec. Electroweak Model and constraints on New Physics of the
2020 edition of this Review [537], –s(M2

Z) = 0.1170+0.0019
≠0.0017. The

latter result, being a global fit of · data, involves some correla-
tions with the other extractions of this category. However, since
we perform an unweighted average of the central value and uncer-
tainty, the e�ects of the potential correlations are reduced.

All these results are summarized in Fig. 9.2. Determining the
unweighted average of the central values and their overall uncer-
tainties, we arrive at –s(M2

Z) = 0.1178 ± 0.0019, which we will
use as the first input for determining the world average value of
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Figure 9.2: Summary of determinations of –s(m2

Z) with uncertainty in the seven sub-fields as
discussed in the text. The yellow (light shaded) bands and dotted lines indicate the pre-average
values of each sub-field. The dashed line and blue (dark shaded) band represent the final world
average value of –s(m2

Z). The “*” symbol within the “hadron colliders” sub-field indicates a deter-
mination including a simultaneous fit of PDFs.
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[Chien, Schwartz, 1005.1644]



• For  colliders, there are not many  data points with high precisions.


• Many jet (substructure) observables used for  determination at the LHC haven’t 
reached NNLO accuracy.

pp αs

αs

6Xiaoyuan Zhang

Motivation: pp

 production: 

Transverse EEC: 
tt̄ 0.1145+0.0036

−0.0031
0.1180+0.0031

−0.0017

[CMS collaboration, 1812.10505]

[ATLAS collaboration, 1508.01579, 1707.02562, 
2301.09351]

• A competitive candidate in recent years: energy correlators

• Energy-weighted cross section as a function of angles among any two detectors

<latexit sha1_base64="QKgw3ppc+y0pHp3jXKNA89SdjLo="></latexit>
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[Basham, Brown, Ellis, Love, 1978]
Energy-energy correlation (2-point)
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[Chen, Luo, Moult, Yang, XYZ, Zhu, 1912.11050]

Energy correlator has the potential to be one of the most precise observables at the LHC 
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Outline

• Motivation


• Part I: Improving the perturbative prediction of heavy jet mass


• Sudakov shoulder


• Factorization theorem


• Position-space resummation


• NNLL shoulder resummation


• Part II:  measurements from  using three-point energy correlator


• Collinear factorization


• Two-loop jet functions


• NNLL resummation for 


• NNLL resummation for 

αs pp → jj

e+e−

pp → jj
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Heavy jet mass (HJM)

• Definition:
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T = max
n

P
i |pi · n|P
i |pi|
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⇢ =
1

Q2
max{m2

L
,m2

H
}
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Thrust: HJM:
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Figure 7: Thrust distribution at Q = MZ at LO (blue), NLO (green) and NNLO (red). The solid
lines represent the prediction for renormalisation scale µ = Q and αs(MZ) = 0.1189, while the
shaded region shows the variation due to varying the renormalisation scale between µ = Q/2 and
µ = 2Q. The data is taken from [1].

The inclusion of the NNLO corrections enhances the thrust distribution by around

(15-20)% over the range 0.04 < (1− T ) < 0.33, where −ln(1−T ) is not too large. Outside

this range, one does not expect the perturbative fixed-order prediction to yield reliable

results. For (1 − T ) → 0, the convergence of the perturbative series is spoilt by powers

of logarithms ln(1− T ) appearing in higher perturbative orders, thus necessitating an all-

order resummation of these logarithmic terms [10, 11], and a matching of fixed-order and

resummed predictions [48].

The perturbative parton-level prediction is compared with the hadron-level data from

the ALEPH collaboration [1] in Figure 7 and Figure 8. We observe that for all Q values,

the shape and normalisation of the parton level NNLO prediction agrees better with the

data than at NLO. We also see that the NNLO corrections account for approximately half

of the difference between the parton-level NLO prediction and the hadron-level data.

6.2 Heavy jet mass

The perturbative prediction for the heavy jet mass distribution is displayed in Figure 9.

The solid lines represent the prediction at the physical scale Q = MZ , while the shaded

bands represent the effect of varying the renormalisation scale upwards and downwards

by a factor of 2. We observe that the relative scale uncertainty is reduced by about 50%

between NLO and NNLO. It is noteworthy that the original motivation for introducing the

heavy jet mass distribution [20] was the hope for improved perturbative stability over the

thrust distribution. This improved stability was not evident from the existing NLO results

alone, but becomes visible at NNLO.

Compared to NLO, the inclusion of the NNLO corrections enhances the heavy jet

mass distribution by around 10% over the range 0.02 < ρ < 0.33, where ln(ρ) is not too

– 15 –
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Figure 9: Heavy jet mass distribution at Q = MZ at LO (blue), NLO (green) and NNLO (red).
The solid lines represent the prediction for renormalisation scale µ = Q and αs(MZ) = 0.1189, while
the shaded region shows the variation due to varying the renormalisation scale between µ = Q/2
and µ = 2Q. The data is taken from [1].

large. At smaller ρ values, large ln(1/ρ) corrections must be resummed to all orders [49]

and matched onto the perturbative prediction. Nevertheless, in the moderate to large ρ

region, the NNLO corrections render the fixed order prediction significantly closer to the

experimental data [1].

Figure 10 shows the prediction for a range of Q values together with the hadron-level

data from the ALEPH collaboration [1]. For this observable, the NNLO corrections are

relatively small, however, for all Q values, the shape and normalisation of the parton-level

NNLO prediction agrees slightly better with the hadron-level data than at NLO.

6.3 Jet broadenings

Predictions for the total and wide jet broadenings are displayed in Figures 11 and 12.

The solid lines represent the prediction at the physical scale Q = MZ , while the shaded

bands represent the effect of varying the renormalisation scale upwards and downwards by

a factor of 2. We observe that the relative scale uncertainty in the BT (BW ) distribution

is reduced by about 40% (50%) between NLO and NNLO.

As anticipated from the discussion in section 5.3, we observe that the perturbative

corrections are smaller for BW than for BT . In the region where perturbation theory

is expected to yield reliable results, (BT , BW ) > 0.05, we observe an enhancement of

(15-20)% in BT and of (8-12)% in BW . As with (1 − T ) and the heavy jet mass, the

two broadenings are identical at leading order, but display a largely different behaviour

in the higher perturbative corrections. At smaller values of broadening, large logarithmic

corrections occur which must be resummed [21].

– 17 –

[De Ridder, Gehrmann, Glover, Heinrich, 0711.4711]

Thrust

HJM
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Heavy jet mass (HJM)
• Remaining problem in  measurement with HJM:αs

Secondly fits for the heavy-jet mass (a very non-inclusive variable) lead to values for αs

which are about 10% smaller than for inclusive variables like the thrust or the mean jet
mass. This needs to be understood. It could be due to a difference in the behaviour of the
perturbation series at higher orders. But in appendix D there is evidence from Monte Carlo
simulations that hadronisation corrections for ρh have unusual characteristics: in contrast to
what is seen in more inclusive variables, the hadronisation depends strongly on the underlying
hard configuration. There is therefore a need to develop techniques allowing a more formal
approach to the study of such problems.
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A Summary of notation

For convenience we give here a summary of the definition of the various schemes introduced
in this article.

p-scheme Scheme in which the observable is defined solely in terms of particle
3-momenta.

E-scheme Scheme in which the observable is defined solely in terms of particle
energies and angles.

decay-scheme Scheme in which all massive particles are decayed isotropically into
pairs of massless particles. The observable is then calculated using
the resulting ensemble of massless particles.

We also summarise some of the other notation used and introduced in this article.

V An event-shape variable.

Vp,VE,Vdecay An event-shape variable in p, E or decay-scheme, respectively.

cV The coefficient of the ‘traditional’ power correction for the observable
V, introduced in eq. (3.5) and given for a range of observables in
table 1.

〈δmV〉 The non-universal mass-dependent correction to the mean value of
the observable V, cf. eq. (3.10).

δcV(m2/k2
t ) The modification to cV for a particle with a given m2/k2

t , cf. eq. (3.12).
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[Salam, Wicke, hep-ph/0102343]20 years ago:
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Figure 9: 1-σ confidence-level contours from fits to event-shape variables in a range of
schemes. (a) fits in the default schemes (normal hadron level); (b) fits in the E-scheme
(normal hadron level), with arrows indicating the motion of the contour in going from the
default to the E-scheme; (c) fits in the E-scheme at resonance level, with arrows indicating
the motion of the contour from the decay-scheme, to the hadron-level E-scheme, to the res-
onance E-scheme — here the correction to resonance level has carried out using only events
with light primary quarks; (d) fits in the E-scheme at resonance level where the correction to
resonance level now includes events with heavy primary quarks as well — the arrows indicate
the motion from the ‘uds’ resonance level.

31

[Becher, Schwartz, 0803.0342]

  [Chien, Schwartz, 1005.1644]

 dijet resummation + NNLO + power correction:


Inconsistence between thrust and heavy jet mass
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Figure 10: Contours of 2σ and 5σ confidence in the simultaneous fit of αs and a non-
perturbative shift parameter ΛNP to the thrust and heavy jet mass aleph data from 91.2
to 206 GeV. The combined fit is also shown.

Event Shape αs(mZ) ΛNP (GeV) χ2/d.o.f.

Thrust 0.1101 0.821 66.9/47

Heavy Jet Mass 0.1017 3.17 60.4/43

Combined 0.1236 -0.621 453/92

Table 3: Best fit values including leading power correction. The χ2 is calculated using both
statistical and experimental systematic uncertainties.

shapes would remove the ambiguity, but this does not happen. Second, we see that while the
perturbative fit has αs lower for thrust than for heavy jet mass, with the power corrections,
the value of αs is higher for thrust, as found in previous studies [17, 18]. However, when we
perform a simultaneous fit to all of the thrust and heavy jet mass degrees of freedom, we get a
value for αs that is larger than each one separately. The best fit for thrust, heavy jet mass, and
the combined fit are shown in Table 3. The fact that the thrust and heavy jet mass contours
do not overlap indicate that a better handling of non-perturbative effects is required.

We conclude that neither correcting the theory curves with a Monte Carlo simulation nor
using a minimal shape function approach for the leading power correction is satisfactory. The
shape function approach is improvable, while the Monte Carlo approach is limited by the
perturbative accuracy of the parton shower, which will be limited to leading-log resummation
in at least the near future (although SCET may eventually help go beyond LL [34, 35]). To
improve the shape function fit, a number of additional ingredients should be included. First
of all, the renormalon ambiguity in separating the perturbative and non-perturbative parts of

21

Today:

10 years ago:

[Nason, Zanderighi, 2301.03607]
Recent progress on trijet power corrections


• Thrust: positive everywhere


• HJM: negative almost everywhere but 
positive near ρ → 0

[Caola et al, 2204.02247]
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• Thrust and HJM have different kinks order by order in perturbation theory

Sudakov 
Shoulder

0.0 0.1 0.2 0.3 0.4 0.5
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

x=τ or ρ

x
dσ dx

0.328 0.330 0.332 0.334 0.336 0.338
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

x=τ or ρ

x
dσ dx

FIG. 2: Thrust (blue) and heavy jet mass (red) at NLO compared to LO (dashed). The NLO

curve does not have LO added in. That is, the LO is the ↵s

2⇡
times the “A” function and the NLO

curves are (↵s

2⇡
)2 times the “B” functions, in the notation of [? ]. Right is a zoom-in of Sudakov

shoulder region near 1

3
. The NLO computation is performed with the program event2 [? ? ]. All

distributions are normalized to Born cross section �0.

2

FIG. 2: Thrust (blue) and heavy jet mass (red) at NLO compared to LO (dashed). The NLO

curve does not have LO added in. That is, the LO is the ↵s

2⇡
times the “A” function and the NLO

curves are (↵s

2⇡
)2 times the “B” functions, in the notation of [8]. Right is a zoom-in of Sudakov

shoulder region near 1

3
. The NLO computation is performed with the program event2 [9, 10]. All

distributions are normalized to Born cross section �0.

shoulder region, the phase space and matrix elements both neatly factorize. This allows

us to define a soft function, which along with the inclusive jet function, can be used to

reproduce all the logarithms at NLO, and more generally the next-to-leading logarithmic

series. In Section IV we analyze the resummed expression. We show that there are no non-

global logarithms for the Sudakov shoulder; only regions related to the trijet configuration

by soft or collinear radiation can generate the shoulder logs. We also find an unusual pole

in the the resummed distribution, qualitatively similar to the Landau pole in the running

coupling. Unlike the QCD Landau pole however, the singularity in the resummed heavy

jet mass shoulder distribution is determined by the cusp anomalous dimension. Thus it is

a kind of Sudakov Landau pole. Similar poles can be found in other observables, such as

the Drell-Yan spectrum at small pT [11–13]. We show that for the Sudakov shoulder case,

the large Sudakov anomalous dimension contributing to this pole also enhances subleading

power e↵ects, making them comparable to the leading power result allowing the pole to be

cancelled in the full distribution. We conclude in Section VI.

II. NEXT-TO-LEADING ORDER ANALYSIS

As a first step towards understanding Sudakov shoulder logarithms, we analyze the matrix

elements and phase space near the shoulder region in full QCD. We concentrate here on the

5

LO

NLO Thrust

NLO HJM LO

NLO Thrust

NLO HJM

ρ =
1
3

,
7 − 2 6

5
,

4 − 7
3

, ⋯

Xiaoyuan Zhang

• Sudakov shoulders arise from incomplete cancellations between the virtual 
corrections and real emissions, where the range of event shape grows order-by-
order in perturbation theory.


• Start with 3-parton configuration, the event shapes are restricted at each order:
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FIG. 1: The trijet configuration where ⇢ = ⌧ = 1

3
has 3 equally spaced jets of equal energy
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FIG. 1: The trijet configuration where ⇢ = ⌧ = 1

3
has 3 equally spaced jets of equal energy

in Fig 1. Near this point the spin-summed 3-body matrix-element-squared is not exceptional

|M1|
2 = |M0|

22CFg
2

s

s
2

12
+ s

2

23
+ 2Q2

s13

s12s13

⇠= |M0|
264⇡CF↵s (3)

where |M0|
2 is the �

⇤
! qq̄ matrix-element-squared. Because the phase space goes to zero

at ⌧ = 1

3
, the di↵erential cross section must vanish there. The result is that

1

�0

d�

d⌧

⇠= 3 ⇥ 48CF

↵s

4⇡

Z 1
3�⌧

0

ds12 = 144CF

↵s

4⇡

✓
1

3
� ⌧

◆
✓

✓
1

3
� ⌧

◆
(4)

with the factor of 3 coming from the 3 choices of thrust axis all of which contribute equally

near ⌧ = 1

3
. Already here we can see the Sudakov shoulder: there is a discontinuity in the

first derivative of the distribution from �144CF
↵s

4⇡
for ⌧ <

1

3
to 0 for ⌧ >

1

3
.

Given the thrust axis from the maximization in Eq. (1), the event is divided into two

hemispheres. We can compute the invariant masses m1 and m2 of all the partons in hemi-

sphere 1 and 2 and then heavy jet mass is defined as

⇢ =
1

Q2
max(m2

1
,m

2

2
) (5)

At order ↵s one hemisphere must be massless and ⌧ = ⇢, and thus d�

d⇢
has a discontinuity in

its first derivative at leading order, just like ⌧ .

Now, consider what happens at higher order in perturbation theory. The parton in the

light hemisphere will radiate gluons, making the light hemisphere massive. Since the cross

section for the light jet having mass less than m after one emission scales like � ⇠ ↵s ln2
m

2

there is a Sudakov enhancement to the cross section at small m2. As the light hemisphere jet

grows, energy must be drawn away from the heavy hemisphere, making it lighter. Roughly

speaking, setting Q = 1 for simplicity, ⇢ . 1

3
�m

2 (as we will derive). As a consequence, the

cross section at ⇢ = 1

3
� m

2 will be enhanced by factors of ln2
m

2 = ln2(1

3
� ⇢). Thus large

3

τ, ρ ≤
1
3

τ, ρ ≤
7 − 2 6

5
≈ 0.42

Tree, one-loop virtual:

Real emission:

Incomplete cancellation  divergence, kinks, etc.   large logarithms⇒ ⇒

[Catani, Webber, hep-ph/9710333]
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• Thrust and HJM have different kinks order by order in perturbation theory
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shoulder region, the phase space and matrix elements both neatly factorize. This allows

us to define a soft function, which along with the inclusive jet function, can be used to

reproduce all the logarithms at NLO, and more generally the next-to-leading logarithmic

series. In Section IV we analyze the resummed expression. We show that there are no non-

global logarithms for the Sudakov shoulder; only regions related to the trijet configuration

by soft or collinear radiation can generate the shoulder logs. We also find an unusual pole

in the the resummed distribution, qualitatively similar to the Landau pole in the running

coupling. Unlike the QCD Landau pole however, the singularity in the resummed heavy

jet mass shoulder distribution is determined by the cusp anomalous dimension. Thus it is

a kind of Sudakov Landau pole. Similar poles can be found in other observables, such as

the Drell-Yan spectrum at small pT [11–13]. We show that for the Sudakov shoulder case,

the large Sudakov anomalous dimension contributing to this pole also enhances subleading

power e↵ects, making them comparable to the leading power result allowing the pole to be

cancelled in the full distribution. We conclude in Section VI.

II. NEXT-TO-LEADING ORDER ANALYSIS

As a first step towards understanding Sudakov shoulder logarithms, we analyze the matrix

elements and phase space near the shoulder region in full QCD. We concentrate here on the

5

LO

NLO Thrust

NLO HJM LO

NLO Thrust

NLO HJM

ρ =
1
3

,
7 − 2 6

5
,

4 − 7
3

, ⋯

Xiaoyuan Zhang

1
σLO

dσ
dτ

=
αs

4π
θ(t){−6 (2CF + CA) t ln2 t + [6CF (1 − 4 ln 3) + CA (1 − 12 ln 3) + 4nfTF] t ln t}

1
σLO

dσ
dρ

=
αs

4π
θ(r){−2 (2CF + CA) r ln2 r + [2CF (1 + 4 ln

4
3 ) + CA ( 1

3
+ 4 ln

4
3 ) +

4
3

nfTF] r ln r}
+

αs

4π
θ(−r){−4 (2CF + CA)(−r)ln2(−r) + [4CF (1 − 4 ln 6) + 2CA ( 1

3
− 4 ln 6) +

8
3

nfTF](−r)ln(−r)}

[Bhattacharya, Schwartz, XYZ, 2205.05702]

• Thrust: only right shoulder t = τ −
1
3

• HJM: left shoulder (affects the  fit!) and right shoulderαs r =
1
3

− ρ

Fixed-order calculations:



• Trijet kinematics:

12

Shoulder factorization theorem
• Motivated from the fixed-order calculation, we derive the factorization in Soft-

Collinear Effective theory (SCET):

LO 

phase 
space

Inclusive jet 
function

Trijet hemisphere 
soft function Measurement

Trijet 
hard 

function

dσi

dx
= σLOH(Q)∫ dm2

1dm2
2dm2

3dkLdkHJq(m2
1)Jq(m2

2)Jg(m2
3)S(x)

i (kL, kH) × M(x)
t Θ (M(x)

t )

HJM: M(ρ)
t = r − (m2

L − m2
H)

M(τ)
t = t − (m2

L + m2
H)Thrust:

:i = g

q

q̄
g

m2
L = m2

3 + kLQ
m2

H = m2
1 + m2

2

+kHQ

:i = q, q̄

q

q̄

g
m2

L = m2
2 + kLQ

m2
H = m2

1 + m2
3

+kHQ

• New ingredient needed: six-directional differential soft function, integrated to the 
trijet hemisphere soft function

Xiaoyuan Zhang



Trĳet hemisphere soft function

S6i(qi) = 2g2
s μ2ϵ ∫

ddk
(2π)d−1

δ+(k2)ℋ(k, qi) × [C23
n2 ⋅ n3

(n2 ⋅ k)(n3 ⋅ k)
+ C12

n1 ⋅ n2

(n1 ⋅ k)(n2 ⋅ k)
+ C13

n1 ⋅ n3

(n1 ⋅ k)(n3 ⋅ k) ]
• Definition of differential soft function

n1

n2

n3

n̄2 · k > n2 · k

n̄3 · k > n3 · k

k1

k3̄
k2

k1̄

k3
k2̄

FIG. 4: Soft radiation from the trijet configuration can be categorized as entering one of 6 sextant

wedges shaped like carpels of an orange. The boundary of each sextant is determined by two planes

orthogonal to the jet directions n1, n2 and n3. For example, radiation in the sextant labeled k1̄

(backwards to the 1-jet) is characterized by n̄2 · k > n2 · k and n̄3 · k > n3 · k.

4

m2
1 +

2Q
3 (n1 ⋅ k1 + N2 ⋅ k2̄ + N3 ⋅ k3̄) <

1
3

− ρ + m2
2 + m2

3 +
2Q
3 (n2 ⋅ k2 + n3 ⋅ k3 + n̄1 ⋅ k1̄)

• From thrust axis constraint (trijet kinematics):

• For HJM,


• For thrust,

N2 = (1,0, +
3

2
,

3
2 ), N3 = (1,0, −

3
2

,
3
2 )

N2 = n̄2, N3 = n̄3

13Xiaoyuan Zhang

soft projections

ℋ(k, qi) = θ (n2 ⋅ k − n̄2 ⋅ k) θ (n3 ⋅ k − n̄3 ⋅ k) δ (q1 −
2
3

n1 ⋅ k) + other five terms

Similar to 3-jettiness 
soft function



• Integrating the differential soft function over hemispheres

where  RGE can be solved in the Laplace space respectivelyKL,H(m2)

Trĳet hemisphere soft function

14

Non-global logs 
beyond NNLL

d�g

d⇢
= �LOH(Q)

Z
dm

2
Ldm

2
H

Z
dm

2
1,2dkHJq(m

2
1)Jq(m

2
2)S

(⇢)
iH (kH)�(m2

H �m
2
1 �m

2
2 � kHQ)

| {z }
KH(m2

H
)

⇥
Z

dm
2
3dkLJg(m

2
3)S

(⇢)
iL (kL)�(m

2
L �m

2
3 � kLQ)

| {z }
KL(m2

L
)

⇥
✓
1

3
� ⇢�m

2
L +m

2
H

◆
⇥

✓
1

3
� ⇢�m

2
L +m

2
H

◆
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<latexit sha1_base64="yoXLtekLVqPOXrbsHLr1umEptEw="></latexit>

Si(qL, qH , µ) =

Z
d6qiS6i(qi, µ)� (qL � q1 � q2̄ � q3̄) � (qH � q1̄ � q2 � q3) = SiL(qL, µ)SiH(qH , µ)Sf (qL � qH)

SiL(qL, μ) = δ(qL)(1 +
αs

4π
ciL) +

αs

4π [
−2CAΓ0 ln qL

μ + 2γsi

qL ]
⋆

SiH(qH, μ) = δ(qH)(1 +
αs

4π
ciH) +

αs

4π [
−4CFΓ0 ln qH

μ + 2γsi

qH ]
⋆

γsg = 8CF ln 2 − 4CA ln 3, γsqq = − 8CF ln 6 ,

γsq = 4CA ln 2 + 4CF ln
2
3

, γsqg = − 4(CA + CF)ln 6 ,

cgL = − 4.44002CA + 1.68285CF,
cgH = − 0.210218CA + 5.10882CF,
cqL = 0.841426CA − 3.59860CF,
cqH = 2.55411CA + 2.34389CF .

• One-loop result:



Sudakov Landau poles
• Resummation in the momentum space

r =
1
3

− ρ > 0

Left shoulder: 1
σLO

dσi

dρ
= Πi(∂ηl

, ∂ηh
)r ( rQ

μse−γE )
ηl+ηh sin(πηl)

π
Γ (−1 − ηl − ηh)

Right shoulder:

s = ρ −
1
3

> 0
1

σLO

dσi

dρ
= Πi(∂ηl

, ∂ηh
)s ( sQ

μse−γE )
ηl+ηh sin(πηh)

π
Γ (−1 − ηl − ηh)

With RG kernel following

0.26 0.28 0.30 0.32

-20

-10

0

10

20

ρ

Γ(
-
1-

η l
-
η h
)

η(g)
l = 2CAAΓ(μj, μs)

η(g)
h = 4CF AΓ(μj, μs)

Πg(∂ηl
, ∂ηh

) = exp [4CFS(μh, μj) + 4CFS(μs, μj) + 2CAS(μh, μj) + 2CAS(μs, μj)] exp [2Aγsg
(μs, μh) + 2Aγsqq

(μs, μh) + 2Aγjg
(μj, μh) + 4Aγjq

(μj, μh)]
× ( Q2

μ2
h )

−2AΓ(μh,μj)

H(Q, μh)j̃q (∂ηh
+ ln

Qμs

μ2
j ) j̃q̄ (∂ηh

+ ln
Qμs

μ2
j ) j̃g (∂ηl

+ ln
Qμs

μ2
j ) s̃gL(∂ηl

)s̃gH(∂ηh
)

• The  function has an infinite number of poles in the  
space (referred as Sudakov Landau pole):


Γ r

−1 − ηl − ηh = 0, − 1
ρ<0

, −2, − 3,⋯

0<ρ< 1
3

15Xiaoyuan Zhang



• Our shoulder HJM measurement


• Power counting: possible hierarchies between hemisphere masses

Sudakov Landau poles

16

dσ
dρ

∼ (r − m2
L + m2

H) θ (r − m2
L + m2

H), r ∼ λ2

our factorization includes

m2
L ∼ 1, m2

H ∼ 1;  r ∼ λ2

m2
L ∼ 1, m2

H ∼ λ2;  r ∼ 1

m2
L ∼ λ2,  m2

H ∼ 1;  r ∼ 1 m2
L ∼ 1, m2

H ∼ 1;  r ∼ 1

m2
L ∼ λ2,  m2

H ∼ λ2;  r ∼ λ2

where EFT is valid irrelevant regions

Our resummation contains non-EFT contributions!

Xiaoyuan Zhang



• Our shoulder HJM measurement


• Power counting: possible hierarchies between hemisphere masses

Sudakov Landau poles

17

dσ
dρ

∼ (r − m2
L + m2

H) θ (r − m2
L + m2

H), r ∼ λ2

our factorization includes

m2
L ∼ 1, m2

H ∼ 1;  r ∼ λ2

m2
L ∼ 1, m2

H ∼ λ2;  r ∼ 1

m2
L ∼ λ2,  m2

H ∼ 1;  r ∼ 1 m2
L ∼ 1, m2

H ∼ 1;  r ∼ 1

m2
L ∼ λ2,  m2

H ∼ λ2;  r ∼ λ2

where EFT is valid irrelevant regions

Our resummation contains non-EFT contributions!

Xiaoyuan Zhang

Fourier space is the only space that diagonalizes the  function 
and allows us to suppresses the non-EFT region

δLaplace  Fourier:≠

σi(r) ∝ fi(r) =
1

Γ(ηl)Γ(ηh) ∫
∞

0
dm2

L ∫
∞

0
dm2

H (m2
L)ηl−1(m2

H)ηh−1δ (r − m2
L + m2

H)

Fourier transformation

 suppresses the non-EFT regione−ϵ(m2
L+m2

H)
z± = z ± iϵ

f̃i(z) = ∫
+∞

−∞
dr eizr fi(r) = ∫

∞

0
dm2

L (m2
L)ηl−1eim2

Lz

Im(z)>0

∫
∞

0
dm2

H (m2
H)ηh−1e−im2

Hz

Im(z)<0

= (−iz+)−ηl (+iz−)−ηh



• The canonical scale in the Fourier space is  (freeze the soft scale at )μmin
s = 2GeV

Fourier/position space scale-setting

18Xiaoyuan Zhang

( 1
σLO

d3σ
dρ3 )

pos

= ∫
+∞

−∞

dz
2π

e−izrσ̃i(z) = 2ℜ [∫
∞

0

dz
2π

e−izrσ̃i(z)], σ̃⋆
i (−z) = σ̃i(z)
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µcan
h = Q, µcan

s (z) =

s✓
Qe��E

|z|

◆2

+ (µmin
s )2, µcan

j (z) =
p

µcan
h µcan

s

• Back to momentum space via Inverse Fourier transformation:

 approximation: LL with Γ0 β0 = 0

-0.04 -0.02 0.00 0.02 0.04
-5

0

5

10

15

20

Momentum 
space

Position 
space

( 1
σLO

d3σ
dρ3 )

pos

= e− 1
2 α̂sΓ0(CA∂2

ηl
+2CF∂2

ηh
) ( 1

σLO

d3σ
dρ3 )

mom

• Derivatives  blow up at Sudakov Landau poles

•  suppresses the divergences

∂η ∼ ∂r
e−∂2

σ̃i(z) = ∫
+∞

−∞
dr eizrσi(r) = Πi(∂ηl

, ∂ηh
) × (−

izeγEμs

Q )
−ηl

(+
izeγEμs

Q )
−ηh

• Resummed second derivative



• Resummation matched to fixed-order:
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µpro
j,s = µ1�g(⇢)

h

⇥
µcan
j,s (z)

⇤g(⇢)
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• Profile scale: turn on the resummation when  and turn it off when 
away from shoulder point

ρ → 1/3

0.0 0.1 0.2 0.3 0.4
0.0

0.2

0.4

0.6

0.8

1.0

First-time position-space scale is critical for non-TMD (SCET-I) observable

NNLL shoulder resummation

ResummationFO
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#
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Matching to dĳet resummation

<latexit sha1_base64="HFBvgF3UfDPJXX8VlOsNhV8/MRQ=">AAADO3icjVJNaxsxENVu0jZ2v5zm2IuIKaSEmt3Sr0shpFB6SwJ1ErC2RitrvUqk1SLNhphF/yuX/oneeumlh5aSa+6RHbfYiQsZEMy8mfc0mlFaSmEhir4H4dLynbv3VhrN+w8ePnrcWn2yb3VlGO8yLbU5TKnlUhS8CwIkPywNpyqV/CA9/jDOH5xwY4UuPsOo5Imiw0JkglHwUH812COZoaweECuGin6pCfBTqBUFljvnPG5y7ZqN93hh3UAcObdBVNWviVF4HP5NlUY79/yfAsZ4c7GGzWclfPQfhcYmkTyD3mKVjzuzKj6aIb64VfO34sw3O08hRgxzSPqtdtSJJoZvOvHUaaOp7fZb38hAs0rxApik1vbiqISkpgYEk9w1SWV5SdkxHfKedwuquE3qye4dfuaRAc608acAPEFnGTVV1o5U6iv9UnN7PTcGF+V6FWTvkloUZQW8YFcXZZXEoPH4I/ldG85AjrxDmRG+V8xy6kcG/rs1/RDi60++6ey/7MRvOq/3XrW3tqfjWEFP0TraQDF6i7bQJ7SLuogFZ8GP4FfwO/wa/gz/hOdXpWEw5ayhOQsvLgGw4BIT</latexit>

d�match

d⇢
=

d�dij(µpro

dij
)

d⇢
+

d�sh(µpro

sh
)

d⇢
+


d�FO(µFO)

d⇢
� d�dij(µFO)

d⇢
� d�sh(µFO)

d⇢

�
• Combine dijet ( ) resummation and shoulder ( ) resummation:ρ → 0 ρ → 1/3
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• Conclusion: shoulder resummation provides significant corrections, which 
could affect the  extraction


• The shoulder factorization provides us a way to study trijet non-perturbative 
power corrections from EFT/SCET

αs

[Benitez-Rathgeb, Bhattacharya, Hoang, Mateu, 
Schwartz, Stewart, XYZ, in progress]
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Outline

• Motivation


• Part I: Improving the perturbative prediction of heavy jet mass


• Sudakov shoulder


• Factorization theorem


• Position-space resummation


• NNLL shoulder resummation


• Part II:  measurements from  using three-point energy correlator


• Collinear factorization


• Two-loop jet functions


• NNLL resummation for 


• NNLL resummation for 

αs pp → jj

e+e−

pp → jj
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Projected energy correlators
• Projecting the N-point energy correlator into a one-dimensional distribution: 

projected -point correlator (ENC)N [Chen, Moult, XYZ, Zhu, 2004.11381]

• Can be used as an event-shape observable at  colliders and a jet substructure 
observable at  colliders

e+e−

pp

Our work: Collinear limit of projected N=3 correlator provides another 
 data point for αs pp → jj

Xiaoyuan Zhang
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 being 
the largest angular distance
xL = (1 − cos θL)/2 is the number of 


final-state particles
m

• In perturbation theory, the collinear limit  behavesxL → 0
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Collinear factorization
• The factorization proposed for EEC at  colliderse+e−

jet function hard function 
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[Dixon, Moult, Zhu, 1905.01310]

• Generalized to -point:N
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For , the largest distance  is replaced with the rapidity-azimuth distance 
. 


The hard function also depends on the jet radius  parameter. Collinear limit 
corresponds to 

pp → jj xL
RL = max

i, j∈XE

Δη2
ij + Δϕ2

ij

R0
RL ≪ R0

[Chen, Moult, XYZ, Zhu, 2004.11381], [Lee, Meçaj, Moult, 2205.03414]
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• Calculation:
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Hard function
• For  collisions, extract from semi-inclusive hadron fragmentation function:e+e−

⃗H (0)
ee (x) = {2δ(1 − x),0}

1
2

H(1)
ee,q(x) =

αs

4π
CF[( 4π2

3
− 9) δ(1 − x) + 4 [ ln(1 − x)

1 − x ]
+

+(4 ln(x) −
3
2 ) (2

1
[1 − x] +

− x − 1) −
9x
2

− 2(x + 1)ln(1 − x) +
7
2 ]

• For  collision, we absorb PDFs and anti-  algorithms into hard function.


• Selection cuts:         


• The two leading jets are further subject to


•  

pp → jj kt

R0 = 0.4, pT > 15GeV, |η | < 1.5

|Δϕ( j1, j2) | > 2, |p1
T − p2

T | /(p1
T + p2

T) < 0.5

MadGraph + LHAPDF
(NNPDF31_nnlo_as_0112)
(NNPDF31_nnlo_as_0118)
(NNPDF31_nnlo_as_0124)

Known to NNLO 

[Mitov, Moch, Vogt, hep-ph/0604053]

[Gehrmann, Schürmann, 2201.06982]

Xiaoyuan Zhang

[Liu, Shen, Zhou, Gao, 2305.14620]

• RGE (DGLAP): d ⃗H(x, ln Q2

μ2 )

d ln μ2
= − ∫

1

x

dy
y

̂P (y) ⋅ ⃗H ( x
y

, ln
Q2

μ2 ) Singlet timelike splitting matrix

̂P (y) = [
Pqq Pqg

Pgq Pgg]
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Jet functions
• From RG invariance, the jet RGE is

d ⃗J [N](ln xLQ2

μ2 )

d ln μ2
= ∫

1

0
dy yN ⃗J [N] (ln

xLy2Q2

μ2 ) ⋅ ̂P (y)

• At LL, we can solve the RGE exactly:

d ⃗J [N]
LL (ln xLQ2

μ2 )

d ln μ2
= ⃗J [N]

LL (ln
xLQ2

μ2
) ⋅

αs

4π ∫
1

0
dy yN ̂P(0)(y) = − ⃗J [N]

LL (ln
xLQ2

μ2
) ⋅

αs

4π
γ(0)
T (N + 1)

γT(N ) ≡ − ∫
1

0
dy yN ̂P(y) = ( αs

4π ) γ(0)
T + ( αs

4π )
2

γ(1)
T + ⋯

Anomalous dimension:
⃗J [N]
LL = 2−N(1,1) ⋅ exp −

γ(0)
T

β0
ln

αs ( xLQ)
αs(μ)

Xiaoyuan Zhang

• Beyond LL, we use a truncated solution in  for DGLAP (called expanded solution)αs

⃗J [N] =
∞

∑
i=0

αi
sLi ⃗ci,i

LL

+
∞

∑
i=1

αi
sLi−1 ⃗ci,i−1

NLL

+
∞

∑
i=2

αi
sLi−2 ⃗ci,i−2

NNLL

+ ⋯ L ≡ ln
xLQ2

μ2Ansatz:

• The only missing ingredients: two-loop jet function constants
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Two-loop jet functions
• We extract the two-loop jet functions from E3C fixed-order calculation


•  process  quark jet function


•  process  gluon jet function

e+e− → qq̄ ⇒
Higgs → gg ⇒

Xiaoyuan Zhang

<latexit sha1_base64="uWD0CwaXRFeLHr+9KLsn7UVfBwg="></latexit>

1

�0

d�[3]

dxL
=

X

1i1 6=i2 6=i34

Z
dLIPS4 |M4|2

Ei1Ei2Ei3

Q3
�(xL �max{xi1,i2 , xi1,i3 , xi2,i3})

+
X

n2{3,4}

X

1i1 6=i2n

Z
dLIPSn |Mn|2

E2
i1Ei2

Q3
�(xL � xi1,i2)

+
X

n2{2,3,4}

X

1i1n

Z
dLIPSn |Mn|2

E3
i1

Q3
�(xL)

Finite term

Boundary term

• For Boundary term, use standard IBP+Differential equation (same as EEC)


• For finite term, we take two steps:

Monte Carlo with proper 
infrared subtraction

(1) Brute-force integration; 

(2) parametric IBP+Differential equation

<latexit sha1_base64="Lzp9pqpJwlX6abTSOxO2Al4Gmd8="></latexit>

d�[3]

dxL
⇠

Z
dxi1,i2dxi1,i3dxi2,i3�(xL �max{xi1,i2 , xi1,i3 , xi2,i3})

d�[3]

dxi1,i2dxi1,i3dxi2,i3

[Dixon, Luo, Shtabovenko, Yang, Zhu, 1801.03219]

[Chen, 1902.10387, 1912.08606, 2007.00507]



27Xiaoyuan Zhang

Two-loop jet functions
• The logarithmic terms are predicted by the jet RGE.


• New result: two-loop jet constants

jq,[3]
2 = 12.3020 CFTFnf − 26.2764 CACF + 21.3943 C2

F

jg,[3]
2 = 17.5487 CATFnf − 2.05342 CFTFnf − 5.97991 C2

A + 0.904693 n2
f T2

F

• We are now ready for NNLL resummation
<latexit sha1_base64="CicDcEtK3cjPjKBOykPN4pigj/0="></latexit>

d�match

dxL
=

d�resum

dxL
� d�sing

dxL
+

d�FO

dxL

Since we are interested in the 
collinear limit (as a jet 
substructure observable), the 
non-singular distribution has 
tiny effect

For , we don’t have the two-loop hard 
constant. So we use the Padé approximation:

pp → jj
a2

s h(2)
0 ≈ κ

(ash (1)
0 )2

h (0)
0

, κ ∈ [0,1/2]
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NNLL resummation:  collisionse+e−

• Perturbative convergence is not satisfactory due to presence of renormalon


• One could do the renormalon subtraction:


•

10-4 0.001 0.010 0.100

0.015

0.020

0.025

0.030

0.035

0.040

[Schindler, Stewart, Sun, 2305.19311]
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NNLL resummation:  collisionse+e−

• Perturbative convergence is not satisfactory due to presence of renormalon


• One could do the renormalon subtraction:


• A easier way is to consider the ratio

[Schindler, Stewart, Sun, 2305.19311]

Δm,n(xL, μ, μ′ ) ≡
dσ[m]/dxL

dσ[n]/dxL
, m, n ≥ 2

m-point correlator/n-point correlator

10-4 0.001 0.010 0.100

0.4

0.5

0.6

0.7

0.8

0.9
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NNLL resummation:  collisionse+e−

• Perturbative convergence is not satisfactory due to presence of renormalon


• One could do the renormalon subtraction:


• A easier way is to consider the ratio

[Schindler, Stewart, Sun, 2305.19311]

Δm,n(xL, μ, μ′ ) ≡
dσ[m]/dxL

dσ[n]/dxL
, m, n ≥ 2

m-point correlator/n-point correlator

10-4 0.001 0.010 0.100

0.4

0.5

0.6

0.7

0.8

0.9

0.0 0.2 0.4 0.6 0.8 1.0
-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Pythia8

• We also find smaller hadronization 
correction in the ratio of energy 
correlators
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Approximate NNLL resummation: pp → jj

• We consider  with two jet  range: [300, 350] GeV and [500,550] GeV


• Normalize the E3C/EEC distribution in the range of 


• Include the  from two-loop hard constant as additional uncertainty

Δ3,2(RL) pt

RL ∈ [0.01,0.4]
κ ∈ [0,1/2]

0.01 0.02 0.05 0.10 0.20

0.8

1.0

1.2

1.4

1.6

0.01 0.02 0.05 0.10 0.20

0.8

1.0

1.2

1.4

1.6

• The value of  from CMS collaboration:αs

αs(mZ) = 0.1229+0.0014
−0.0012(stat)+0.0030

−0.0033(theo)+0.0023
−0.0036(exp)

[CMS collaboration, 2402.13864]

The most precise  using jet substructure observableαs
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0
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/
d
Ω

Combined perturbative uncertainties

NLL0
dij+NLLpro

sh +LO

NNLL0
dij+NNLLpro

sh +NLO

32Xiaoyuan Zhang

Conclusion
• There is a long-standing discrepancy between low-energy  extractions in lattice 

QCD and high-energy collider measurements.
αs

• For , we study the collinear resummation 
of projected three-point energy correlators


• The two-loop jet constants are calculated 
using modern multi-loop techniques.


• The most precise  measurement from jet 
substructure: .

pp → jj

αs
αs(mZ) = 0.1229+0.0040

−0.0050

• For  colliders, we study the Sudakov shoulder 
resummation for heavy jet mass


• Position-space scale setting is critical


• Provide significant corrections to the 
perturbative predictions

e+e−


