Fragmentation functions: definitions & sum rules

Ted Rogers Jefferson Lab and Old Dominion University

Based on: John Collins, TCR Phys.Rev.D 109 (2024) 1, 016006 and other works in progress

Loopfest 2024, Southern Methodist University, Dallas, Texas May 21, 2024

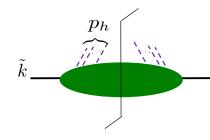
Fragmentation functions

• Definition: start from $\langle {f k} ig | {f k}'
angle$

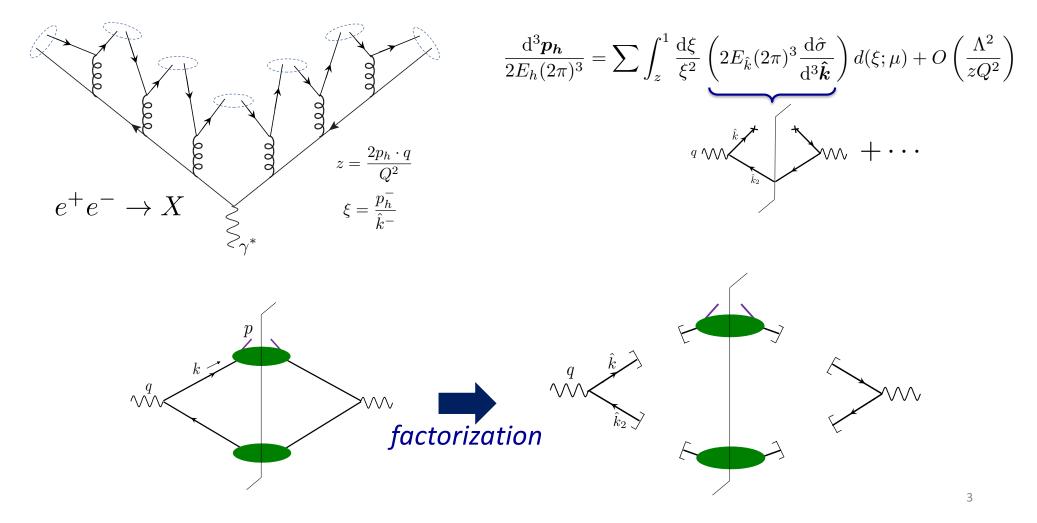
 $\begin{array}{l} \bullet \quad d_{(0),h/j}(z) \equiv \int \mathrm{d}^{2-2\epsilon} p_{\mathrm{T}} \, d_{(0),h/j}(z,p_{\mathrm{T}}) \\ = \frac{\mathrm{Tr}_{D}}{4} \sum_{X} z^{1-2\epsilon} \int \frac{\mathrm{d}x^{+}}{2\pi} e^{ik^{-}x^{+}} \gamma^{-} \langle 0 | \psi_{j}^{(0)}(x/2) | h, X, \mathrm{out} \rangle \langle h, X, \mathrm{out} | \overline{\psi}_{j}^{(0)}(-x/2) | 0 \rangle \end{array}$

Insert number density operator

Graphically
$$d(\xi, \boldsymbol{p}_{hpT}) = \frac{1}{4\xi} \int \frac{\mathrm{d}k_H^-}{(2\pi)^4} \mathrm{Tr} \begin{bmatrix} \gamma^- \tilde{k} & p_h \end{bmatrix}$$



Cross sections



Fragmentation functions

- Definition: $\begin{aligned} & d_{(0),h/j}(z) \equiv \int d^{2-2\epsilon} \boldsymbol{p}_{\mathrm{T}} \, d_{(0),h/j}(z, \boldsymbol{p}_{\mathrm{T}}) \\ & = \frac{\mathrm{Tr}_D}{4} \sum_X z^{1-2\epsilon} \int \frac{\mathrm{d}x^+}{2\pi} e^{ik^- x^+} \gamma^- \langle 0 | \psi_j^{(0)}(x/2) | h, X, \mathrm{out} \rangle \langle h, X, \mathrm{out} | \overline{\psi}_j^{(0)}(-x/2) | 0 \rangle \end{aligned}$
- In QCD: Include Wilson lines and color trace.

Sum rules:	Workman, et al, Particle Data Group,
Momentum	$\sum_{h} \int_{0}^{1} dz \ z \ d_{h/j}(z) = 1 \qquad \begin{array}{l} \textit{Review of Particle Physics,} \\ \textit{PTEP 2022, 083C01 (2022)} \\ \textit{Eq.(19.3)} \end{array}$
Charge	$\sum_{h} \mathcal{Q}_{h} \int_{0}^{1} \mathrm{d}z \ d_{h/j}(z) = \mathcal{Q}_{j}$

Fragmentation functions

- Definition: $\begin{aligned} & d_{(0),h/j}(z) \equiv \int d^{2-2\epsilon} \boldsymbol{p}_{\mathrm{T}} \, d_{(0),h/j}(z, \boldsymbol{p}_{\mathrm{T}}) \\ & = \frac{\mathrm{Tr}_D}{4} \sum_X z^{1-2\epsilon} \int \frac{\mathrm{d}x^+}{2\pi} e^{ik^- x^+} \gamma^- \langle 0 | \psi_j^{(0)}(x/2) | h, X, \mathrm{out} \rangle \langle h, X, \mathrm{out} | \overline{\psi}_j^{(0)}(-x/2) | 0 \rangle \end{aligned}$
- In QCD: Include Wilson lines and color trace.

Sum rules:

• Momentum	$\sum_h \int_0^1 \mathrm{d}z \ z d_{h/j}(z) = 1$	
Charge	$\sum_{h} \mathcal{Q}_{h} \int_{0}^{1} \mathrm{d}z \ d_{h/j}(z) = \mathcal{Q}_{j}$	
 Multiplicity 	$\sum_{h} \int_{0}^{1} \mathrm{d}z \ d_{h/j}(z) = \langle N \rangle$	
 Extensions to multihadron FFs & other correlation functions 	$\sum_{h} \int \mathrm{d}z_1 \mathrm{d}z_2 d_{h_1 h_2 / j}(z_1, z_2) = \langle N(N-1) \rangle$	Pitonyak et al, Phys.Rev.Lett. 132 (2024) 1, 011902
• TMD FFs, etc		5

General derivations

- Definition (bare) $d_{(0),h/j}(z, \boldsymbol{p}_{\mathrm{T}}) \sim \sum_{X} \langle \operatorname{quark} | h, X, \operatorname{out} \rangle \langle h, X, \operatorname{out} | \operatorname{quark}' \rangle$ $\sum_{X} | h, X, \operatorname{out} \rangle \langle h, X, \operatorname{out} | \equiv \sum_{X} a_{h,p,\operatorname{out}}^{\dagger} | X, \operatorname{out} \rangle \langle X, \operatorname{out} | a_{h,p,\operatorname{out}} | X = a_{h,p,\operatorname{out}}^{\dagger} a_{h,p,\operatorname{out}} a_{h,p,p,\operatorname{out}} a_{h,p,p,\operatorname{out}} a_{h$
 - Operators for conserved currents (e.g. momentum)

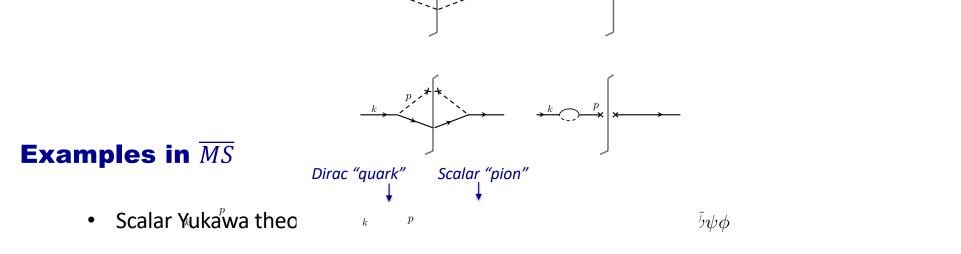
$$\mathcal{P}^{\mu} = \sum_{h} \int_{0}^{\infty} \frac{\mathrm{d}p^{-}}{2p^{-}} \int \frac{\mathrm{d}^{2-2\epsilon} \boldsymbol{p}_{\mathrm{T}}}{(2\pi)^{3-2\epsilon}} a_{h,p,\mathrm{out}}^{\dagger} p^{\mu} a_{h,p,\mathrm{out}}$$

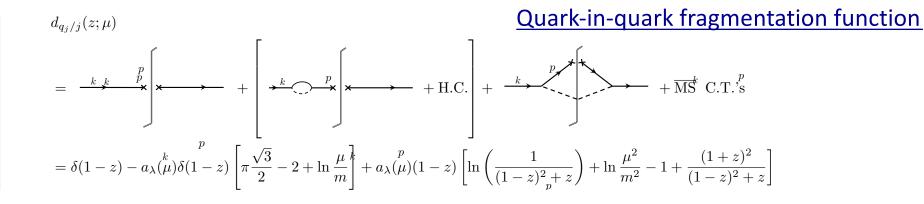
Sum rules follow from unitarity of asymptotic states ٠

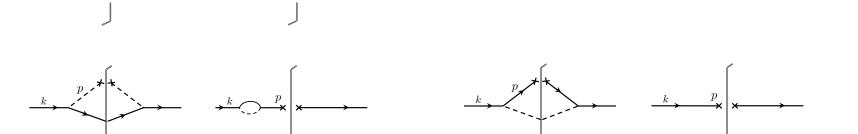
$$\sum_{X} |X, \mathrm{out}\rangle \langle X, \mathrm{out}| = \widehat{1}$$

- Preserved by standard renormalization ٠
- Straightforward in **nongauge** theories

Operators for on-shell asymptotic states

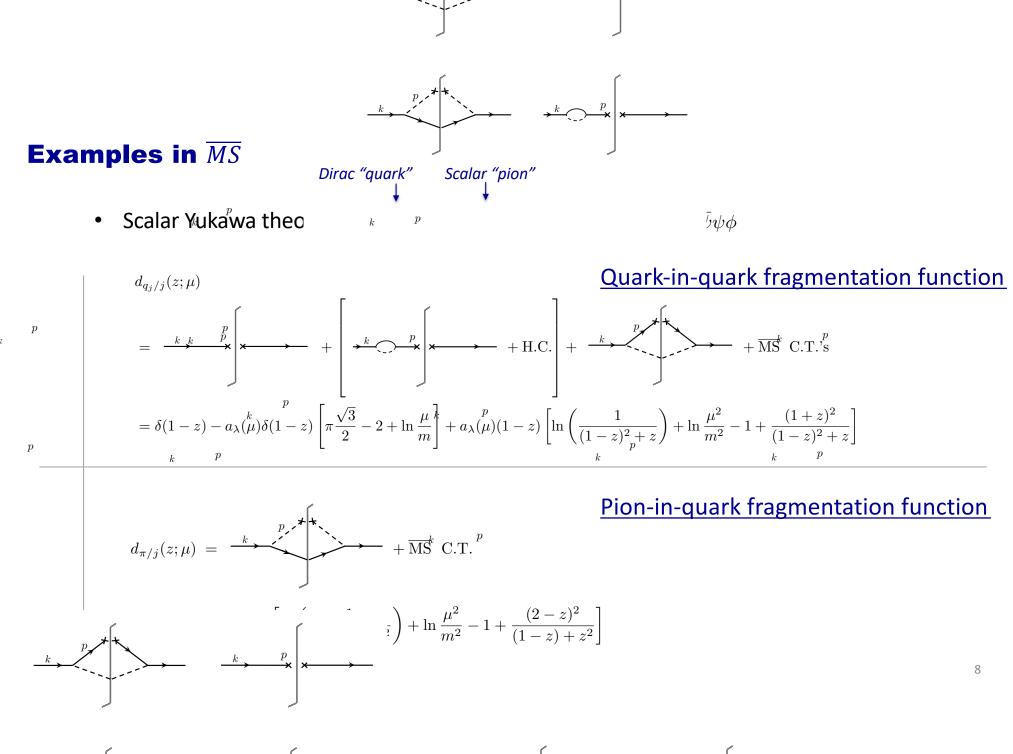


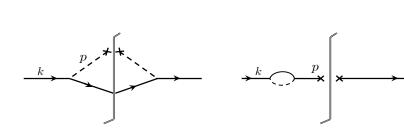




p

p



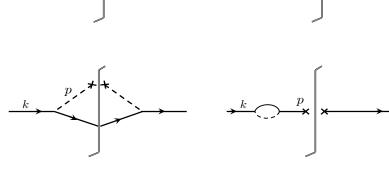


 $\xrightarrow{k} \xrightarrow{p} \times$

$$\mu) = 1 - a_{\lambda}(\mu) \left[\pi \frac{\sqrt{3}}{2} - 2 + \ln \frac{\mu}{m} \right]$$
$$\mu) = a_{\lambda}(\mu) \left[\pi \frac{\sqrt{3}}{2} - 2 + \ln \frac{\mu}{m} \right],$$

 $| \times | \times \longrightarrow$

$$\int_{0}^{1} \mathrm{d}z \, z d_{q_{j}/j}(z;\mu) = 1 - a_{\lambda}(\mu) \left[-\frac{13}{9} + \frac{\pi}{\sqrt{3}} + \frac{1}{3} \ln \frac{\mu^{2}}{m^{2}} \right] ,$$
$$\int_{0}^{1} \mathrm{d}z \, z d_{\pi/j}(z;\mu) = a_{\lambda}(\mu) \left[-\frac{13}{9} + \frac{\pi}{\sqrt{3}} + \frac{1}{3} \ln \frac{\mu^{2}}{m^{2}} \right] .$$



$$\mu) = 1 - a_{\lambda}(\mu) \left[\pi \frac{\sqrt{3}}{2} - 2 + \ln \frac{\mu}{m} \right],$$

$$\iota) = a_{\lambda}(\mu) \left[\pi \frac{\sqrt{3}}{2} - 2 + \ln \frac{\mu}{m} \right],$$

$$\int_{0}^{1} dz \, z d_{q_{j}/j}(z;\mu) = 1 - a_{\lambda}(\mu) \left[-\frac{13}{9} + \frac{\pi}{\sqrt{3}} + \frac{1}{3} \ln \frac{\mu^{2}}{m^{2}} \right],$$

$$\int_{0}^{1} dz \, z d_{\pi/j}(z;\mu) = a_{\lambda}(\mu) \left[-\frac{13}{9} + \frac{\pi}{\sqrt{3}} + \frac{1}{3} \ln \frac{\mu^{2}}{m^{2}} \right].$$

• Check sum rules:

$$\sum_{h} \int_{0}^{1} dz \ z \ d_{h/j}(z) = 1$$

$$\sum_{h} \mathcal{Q}_{h} \int_{0}^{1} dz \ d_{h/j}(z) = \mathcal{Q}_{j}$$

$$Jlab \ DIS \ multiplicities \approx 5$$

$$EIC \approx 12 \ or \ 13$$

$$\sum_{h} \int_{0}^{1} dz \ d_{h/j}(z) = \langle N \rangle$$
(Sort of)

10

 $\stackrel{p}{\rightarrow}$

A paradox in the definitions?

• Are FFs zero?

$$\langle \text{quark} | \text{quark}' \rangle = \sum_{X} \langle \text{quark} | X, \text{out} \rangle \langle X, \text{out} | \text{quark}' \rangle = 0$$

 $T \to \infty \text{ Asymptotic} \quad \langle \text{quark} | \text{hadron} \rangle = 0$

hadronic states

A paradox in the definitions?

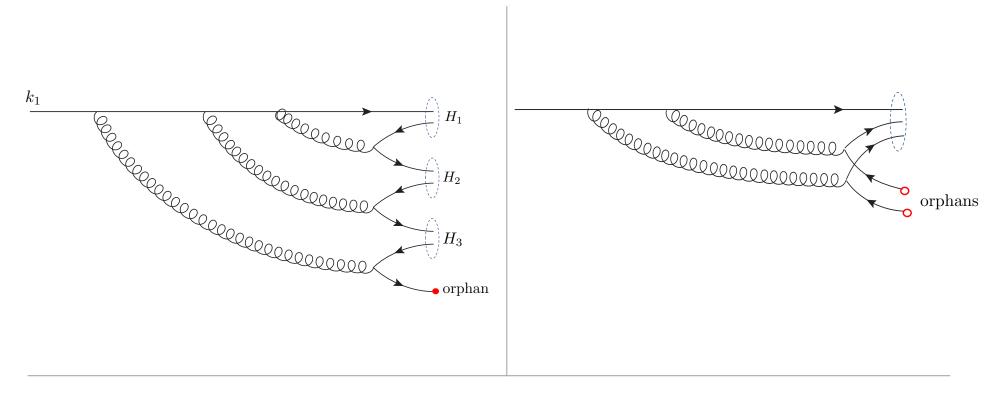
- Are FFs zero? $\langle \text{quark}|\text{quark}' \rangle = \sum_{X} \langle \text{quark}|X, \text{out} \rangle \langle X, \text{out}|\text{quark}' \rangle = 0$ $T \to \infty \text{ Asymptotic} \quad \langle \text{quark}|\text{hadron} \rangle = 0$ hadronic states
- Non-gauge theories: Fields directly correspond to asymptotic physical states

A paradox in the definitions?

- Are FFs zero? $\langle \text{quark}|\text{quark}' \rangle = \sum_{X} \langle \text{quark}|X, \text{out} \rangle \langle X, \text{out}|\text{quark}' \rangle = 0$ $T \to \infty \text{ Asymptotic} \quad \langle \text{quark}|\text{hadron} \rangle = 0$ hadronic states
- <u>Non-gauge theories</u>: Fields directly correspond to asymptotic physical states
- <u>In QCD/QED</u>: Local fields are not gauge invariant they do not create unambiguously physical particle states
 - $\ \overline{\psi}(y) |0\rangle \rightarrow \overline{\psi}(y) WL[\infty,y;n] |0\rangle$
 - Wilson line is a source of color charge
 - Asymptotic states must include a kind of "quark/Wilson line bound state"

Normal hadronic Fock space
$$\underline{\mathcal{E}} o \mathcal{E} \otimes \underline{\mathcal{B}}$$
 Space of quark-Wilson bound states

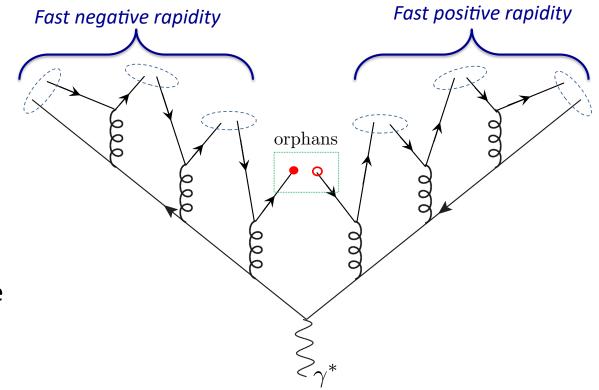
Visualizing the issue



• At least one "orphan" (anti)quark is always left over

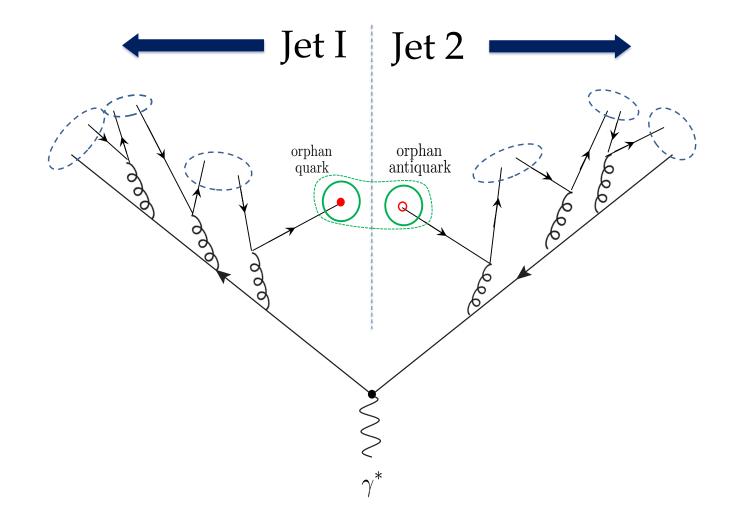
What occurs in a factorization derivation?

- Must match FFs onto full process in region of unclassifiable ≈ 0 rapidity hadrons
- Split unclassifiable hadron(s) & insert zero rapidity Wilson lines
- Slow hadrons lie outside the region relevant to the factorization theorem



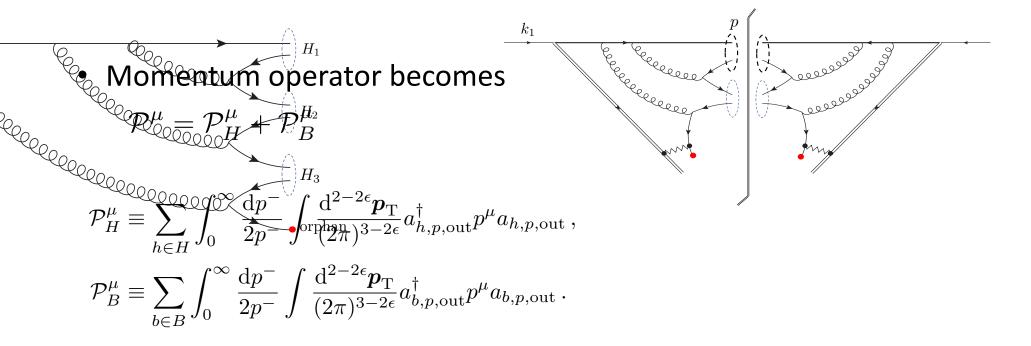
 $e^+e^- \to h_1 + h_2 + X$

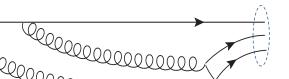
What occurs in a factorization derivation?

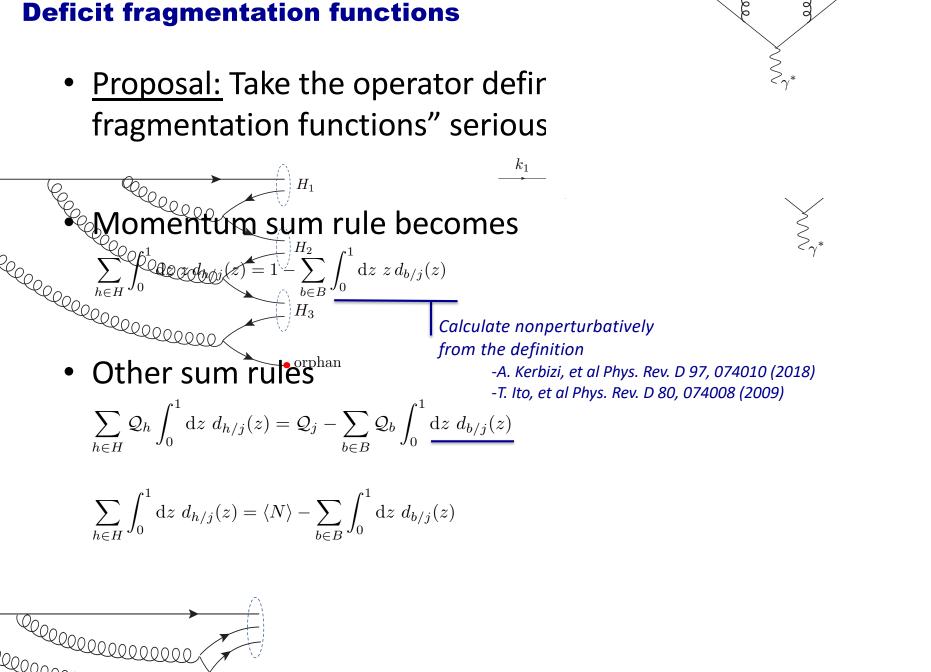


Deficit fragmentation functions

<u>Proposal</u>: Take the operator definitions of "deficit fragmentation functions" seriously

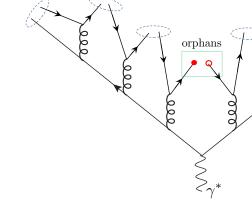






orphans

18



Model deficit ffs as δ functions

• Momentum sum rule is preserved if deficit ff is

$$\sum_{h \in H} \int_0^1 \mathrm{d}z \ z \, d_{h/j}(z) = 1 - \sum_{b \in B} \int_0^1 \mathrm{d}z \ z \, d_{b/j}(z)$$

• Other sum rules are not

$$\sum_{h \in H} \mathcal{Q}_h \int_0^1 \mathrm{d}z \ d_{h/j}(z) = \mathcal{Q}_j - \sum_{b \in B} \mathcal{Q}_b \int_0^1 \mathrm{d}z \ d_{b/j}(z)$$
Constant
$$\sum_{h \in H} \int_0^1 \mathrm{d}z \ d_{h/j}(z) = \langle N \rangle - \sum_{b \in B} \int_0^1 \mathrm{d}z \ d_{b/j}(z)$$
Constant

Relationship to factorization

• Factorization theorem applies to fixed z and $Q/\Lambda \rightarrow \infty$

$$\frac{\mathrm{d}^{3}\boldsymbol{p_{h}}}{2E_{h}(2\pi)^{3}} = \sum \int_{z}^{1} \frac{\mathrm{d}\xi}{\xi^{2}} \left(2E_{\hat{k}}(2\pi)^{3} \frac{\mathrm{d}\hat{\sigma}}{\mathrm{d}^{3}\hat{k}} \right) d(\xi;\mu) + O\left(\frac{\Lambda^{2}}{zQ^{2}}\right)$$
$$\underbrace{\frac{1}{\sigma_{0}} \frac{\mathrm{d}\sigma}{\mathrm{d}z}}_{\frac{1}{\sigma_{0}} \frac{\mathrm{d}\sigma}{\mathrm{d}z}} = d(z;Q) + O\left(\frac{\Lambda^{2}}{zQ^{2}}\right) + O\left(\alpha_{s}\right) .$$
$$\underbrace{\frac{1}{\sigma_{0}} \frac{\mathrm{d}\sigma}{\mathrm{d}z}}_{\mathrm{hadron types}} \int_{0}^{1} \mathrm{d}z \frac{1}{\sigma_{0}} \frac{\mathrm{d}\sigma}{\mathrm{d}z} \approx \sum_{\mathrm{hadrons}} \int_{0}^{1} \mathrm{d}z \, d(z;Q) = \langle N \rangle$$

Questions

- Are deficit ffs *exactly* localized at z = 0?
- Is there an impact on extractions?
 - Sum rules are preserved by DGLAP, but only if all ffs are included

$$\frac{\mathrm{d}}{\mathrm{d}\ln\mu^2} d_{h/j}(z;\mu) = \sum_{j'} \int_z^1 \frac{\mathrm{d}z'}{z'} d_{h/j'}(z/z';\mu) P_{j'j}(z')$$

• Can calculating deficit fragmentation functions nonperturbatively lead to insights about hadronization?

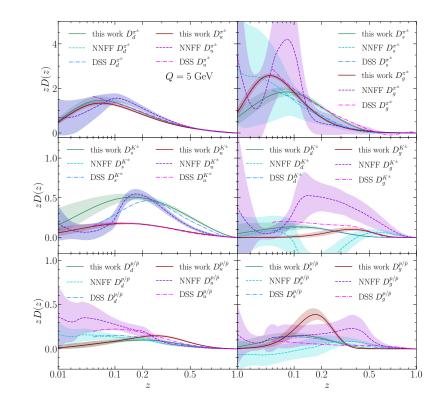
Extractions

• Difficulties with combining evolution and sum rules

"This observation renders the energy sum rule (8) a delicate concept for perturbative QCD FFs and we believe it should not be considered within this theoretical framework unless the $z \rightarrow 0$ behaviour of FFs is under better control." -S. Kretzer (2000), Phys.Rev.D 62 (2000) 054001

• Recent tests & extractions:

J. Gao, et al 2401.02781 [hep-ph] Simultaneous Determination of Fragmentation Functions and Test on Momentum Sum Rule



Extractions

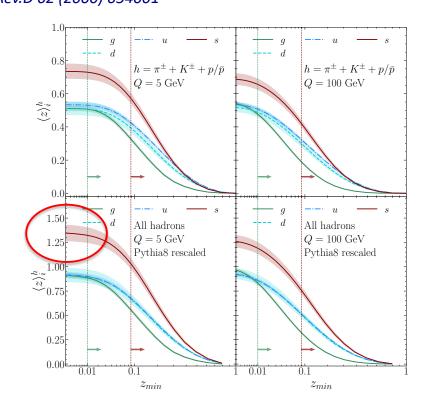
• Difficulties with combining evolution and sum rules

"This observation renders the energy sum rule (8) a delicate concept for perturbative QCD FFs and we believe it should not be considered within this theoretical framework unless the $z \rightarrow 0$ behaviour of FFs is under better control." -S. Kretzer (2000), Phys.Rev.D 62 (2000) 054001

• Recent tests & extractions:

J. Gao, et al 2401.02781 [hep-ph] Simultaneous Determination of Fragmentation Functions and Test on Momentum Sum Rule





Refining the definition (preliminary)

• Proposal: Start with gauge invariant $q\bar{q}$ wave packet states

- Basis states:
$$|k, s, \underline{w}\rangle \equiv \operatorname{Tr}_C \int \mathrm{d}y^+ \,\mathrm{d}^2 \boldsymbol{y}_{\mathrm{T}} \, e^{-ik \cdot y} \bar{u}_k^s \gamma^- \psi(w+L) \mathrm{WL}[w+L, y] \bar{\psi}(y) \gamma^- u_k^s |0\rangle$$

 $L = (l, -e^{-y}, \mathbf{0})$

- Wave packets:
$$|F,g,l\rangle \equiv g(w,l) \int \frac{\mathrm{d}k^{-} \mathrm{d}^{2} \boldsymbol{k}_{\mathrm{T}}}{2k^{-}(2\pi)^{3}} F(k,l)|k,w\rangle$$

 $\int \frac{\mathrm{d}k^{-} \mathrm{d}^{2} \boldsymbol{k}_{\mathrm{T}}}{(2\pi)^{3}} |F(k,l)|^{2} = 1 \qquad \int \mathrm{d}w^{+} \mathrm{d}^{2} \boldsymbol{w}_{\mathrm{T}} |g(w,l)|^{2} = 1 \qquad \lim_{l \to \infty} \int \mathrm{d}w^{+} \mathrm{d}^{2} \boldsymbol{w}_{\mathrm{T}} \langle F,g,l|F,g,l\rangle = 1$
- Work with: $\sum_{X} \lim_{l \to \infty} \int \mathrm{d}w^{+} \mathrm{d}^{2} \boldsymbol{w}_{\mathrm{T}} \langle F,g,l|X\rangle \langle X|F,g,l\rangle = 1$

- Arrive at standard definition but with

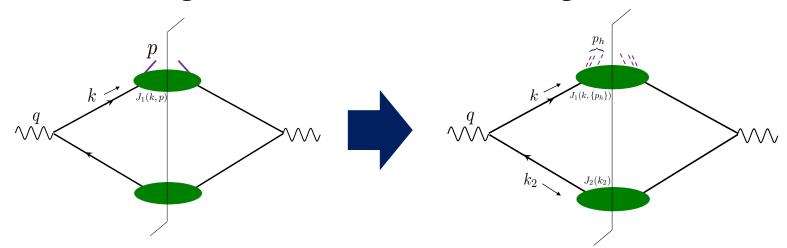
$$|X\rangle\langle X| \to \bar{\psi}(w+L)\gamma^{-}u_{k}^{s}|X\rangle\langle X|\bar{u}_{k}^{s}\gamma^{-}\psi(w+L)$$

 $w = (0, 0, w_{\rm T})$

Asymptotic Hadron states

Other fragmentation functions

Dihadron fragmentation or n-hadron fragmentation



• Access to transversity, tensor charge, etc

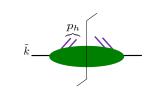
-A. Bianconi, et al Phys. Rev. D 62 (2000) 034008 -Bacchetta and Radici, Phys. Rev. D67 (2003) 094002

Relationship to factorization

• Factorization theorem applies to fixed z and $Q/\Lambda \rightarrow \infty$

$$\frac{\mathrm{d}^{3}\boldsymbol{p_{h}}}{2E_{h}(2\pi)^{3}} = \sum \int_{z}^{1} \frac{\mathrm{d}\xi}{\xi^{2}} \left(2E_{\hat{k}}(2\pi)^{3} \frac{\mathrm{d}\hat{\sigma}}{\mathrm{d}^{3}\hat{k}} \right) d(\xi;\mu) + O\left(\frac{\Lambda^{2}}{zQ^{2}}\right)$$
$$\underbrace{\frac{1}{\sigma_{0}} \frac{\mathrm{d}\sigma}{\mathrm{d}z}}_{\frac{1}{\sigma_{0}} \frac{\mathrm{d}\sigma}{\mathrm{d}z}} = d(z;Q) + O\left(\frac{\Lambda^{2}}{zQ^{2}}\right) + O\left(\alpha_{s}\right) .$$
$$\underbrace{\frac{1}{\sigma_{0}} \frac{\mathrm{d}\sigma}{\mathrm{d}z}}_{\mathrm{hadron types}} \int_{0}^{1} \mathrm{d}z \frac{1}{\sigma_{0}} \frac{\mathrm{d}\sigma}{\mathrm{d}z} \approx \sum_{\mathrm{hadrons}} \int_{0}^{1} \mathrm{d}z \, d(z;Q) = \langle N \rangle$$

Other fragmer



- $d(\xi, \boldsymbol{p}_{hp\mathrm{T}}) = \frac{1}{4\xi} \int \frac{\mathrm{d}k_{H}}{(2\pi)^{4}} \mathrm{Tr} \begin{bmatrix} p_{h} \\ \gamma^{-} & \tilde{k} \end{bmatrix}$
- "Parton Model" + # $(2\pi)^{3} 2E_{1}(2\pi)^{3} 2E$ $= \frac{1}{64\xi_{1}\xi_{2}(2\pi)^{3}} \sim \frac{1}{\xi^{2}}$

- Paradox: Factorization a remaining the $c = \frac{1}{4\xi}$
- Problem lies with application of # sum rule

Conclusion

- Status of sum rules is more complicated but more interesting for fragmentation functions than for pdfs
- Relevant for precision tests and phenomenological extractions of fragmentation functions
- Refining definitions: Possible avenues for understanding hadronization?
- Overly literal application of sum rules leads to conflicting results

Backup

Parton model derivation of momentum sum rule
 Definition of inclusive cross section

$$\sum_{h} \int d^{3}\mathbf{p}_{h} \frac{d\sigma^{h}}{dx \, dQ^{2} \, d^{3}\mathbf{p}_{h}} = \langle N \rangle \frac{d\sigma}{dx \, dQ^{2}} \implies \sum_{h} \int dz \, F_{1,h}(x,z,Q^{2}) = \langle N \rangle F_{1}(x,Q^{2})$$
$$\implies \sum_{h} \int dz \, zF_{1,h}(x,z,Q^{2}) = F_{1}(x,Q^{2})$$

– Parton model $F_{1,h}(x, z, Q^2) = H_1 f(x) d_h(z), F_1(x, Q^2) = H_1 f(x)$

$$\sum_{h} \int \mathrm{d}z \, z F_{1,h}(x,z,Q^2) = H_1 f(x) \left(\sum_{h} \int \mathrm{d}z \, z d_h(z) \right) = H_1 f(x) \quad \Longrightarrow \quad \sum_{h} \int \mathrm{d}z \, z d_h(z) = 1$$

- Experimentalists and theorists means something different by "inclusive!"
- What does $1 = \sum_{X} |X\rangle \langle X|$ really mean?
 - Not included in (many) experimental SIDIS measurements: $eN \rightarrow e + N + \pi$ $eN \rightarrow e + \rho + X$??
 - But included in DIS measurements

• What if elastic pions are subtracted?

 $-eN \rightarrow e + N + \pi$

Parton model derivation of momentum sum rule
 Definition of inclusive cross section

$$\sum_{h} \int d^{3}\mathbf{p}_{h} \frac{d\sigma^{h}}{dx \, dQ^{2} \, d^{3}\mathbf{p}_{h}} = \langle N \rangle \frac{d\sigma}{dx \, dQ^{2}} \implies \sum_{h} \int dz \, F_{1,h}(x, z, Q^{2}) = \langle N \rangle F_{1}(x, Q^{2})$$

$$\implies \sum_{h} \int dz \, z F_{1,h}(x, z, Q^{2}) \neq F_{1}(x, Q^{2})$$
No elastic pions

$$= \mathsf{Parton model} \quad F_{1,h}(x, z, Q^{2}) = H_{1}f(x)d_{h}(z), \ F_{1}(x, Q^{2}) = H_{1}f(x)$$

$$\sum_{h} \int \mathrm{d}z \, z F_{1,h}(x,z,Q^2) = H_1 f(x) \left(\sum_{h} \int \mathrm{d}z \, z d_h(z) \right) \neq H_1 f(x) \quad \Longrightarrow \quad \sum_{h} \int \mathrm{d}z \, z d_h(z) = 1$$