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The results are based on the proton-proton (pp) collision data collected at the LHC during the
years 2016–2018, at

p
s = 13 TeV, by the CMS experiment. The data correspond to an integrated

luminosity of 138 fb�1. The analysis is performed in four tt final states: eµ, eth, µth, and
thth, where e, µ, and th indicate t decays into electrons, muons, and hadrons, respectively.
For this analysis the most significant backgrounds are estimated from data, which includes
all SM processes with two genuine t leptons in the final state, and processes where quark- or
gluon-induced jets are misidentified as th, denoted as jet ! th.

The paper is organized as follows. Section 2 gives an overview of the phenomenology of the
BSM physics scenarios under consideration. Section 3 describes the CMS detector, and Section 4
describes the event reconstruction. Section 5 summarizes the event selection and categorization
used for the extraction of the signal. The data model and systematic uncertainties are described
in Sections 6 and 7. Section 8 contains the results of the analysis. Section 9 briefly summarizes
the paper. A complete set of tabulated results of this search for all tested mass hypotheses is
available in the HEPData database [46].

2 Signal models
Neutral (pseudo)scalar bosons f appear in many extensions of the SM. They may have different
couplings to the upper and lower components of the SU(2)L fermion fields (associated with
up- and down-type fermions) and gauge bosons. In several models, like the MSSM models
discussed in Section 2.2, the f couplings to down-type fermions are enhanced with respect
to the expectation for an SM Higgs boson of the same mass, while the couplings to up-type
fermions and vector bosons are suppressed. This makes down-type fermion final states, such
as tt , particularly interesting for searches for neutral Higgs bosons in addition to H(125). An
enhancement in the couplings to down-type fermions also increases the bbf production cross
section relative to ggf, which is another characteristic signature of these models and motivates
the search for enhanced production cross sections in this production mode with respect to the
SM expectation. In a first interpretation of the data, which is meant to be as model independent
as possible, we search for f production via the ggf and bbf processes in a range of 60  mf 

3500 GeV, where mf denotes the hypothesized f mass. Diagrams for these processes are shown
in Fig. 1. In a second, more specific interpretation of the data, we search for nonresonant tt
production in a model with vector leptoquarks. Finally, in a third interpretation of the data,
we survey the parameter space of two indicative benchmark scenarios of the MSSM, which
predict multiresonance signatures, one of which is associated with H(125). The most important
characteristics of the vector leptoquark model and the MSSM are described in the following.
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Figure 1: Diagrams for the production of neutral Higgs bosons f (left) via gluon fusion, labelled
as ggf, and (middle and right) in association with b quarks, labelled as bbf in the text. In the
middle diagram, a pair of b quarks is produced from the fusion of two gluons, one from each
proton. In the right diagram, a b quark from one proton scatters from a gluon from the other
proton. In both cases f is radiated off one of the b quarks.
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Many BSM models include an extended Higgs sector, with two (or more) scalar 
doublets included (e.g. 2HDM, MSSM etc etc.). These naturally produce both CP 
even (h, H) and CP odd (A) neutral scalar bosons. 

An important point is that the A boson will not couple to up and down type quarks 
equally. 

This introduces a new parameter typically defined as   which sets the ratio of 
the two vevs.  

tan β
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in Fig. 1. In a second, more specific interpretation of the data, we search for nonresonant tt
production in a model with vector leptoquarks. Finally, in a third interpretation of the data,
we survey the parameter space of two indicative benchmark scenarios of the MSSM, which
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characteristics of the vector leptoquark model and the MSSM are described in the following.

g

g

�

g

g

�

b̄

b

b

b

�

g

Figure 1: Diagrams for the production of neutral Higgs bosons f (left) via gluon fusion, labelled
as ggf, and (middle and right) in association with b quarks, labelled as bbf in the text. In the
middle diagram, a pair of b quarks is produced from the fusion of two gluons, one from each
proton. In the right diagram, a b quark from one proton scatters from a gluon from the other
proton. In both cases f is radiated off one of the b quarks.
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expected m
tot
T (mtt ) distributions for a ggf or bbf signal with mf = 1200 (100)GeV are also

shown.

Figure 10 shows the expected and observed 95% confidence level (CL) upper limits on the
product of the cross sections and branching fraction for the decay into t leptons for ggf and
bbf production in a mass range of 60  mf  3500 GeV. These limits have been obtained
following the modified frequentist approach described in Refs. [159, 160]. When setting the
limit in one production mode the POI of the other production mode is profiled. The limits are
shown with a separation into the low-mass (mf < 250 GeV) and high-mass (mf � 250 GeV)
regions of the search.

The expected limits in the absence of a signal span four orders of magnitude between ⇡10 pb
(at mf = 60 GeV) and ⇡0.3 fb (at mf = 3.5 TeV) for both production modes, with a falling slope
for increasing values of mf. In general, the observation falls within the central 95% interval of
the expectation. For the low-mass search, the largest deviation from the expectation is observed
for ggf production at mf = 100 GeV with a local (global) p-value equivalent to 3.1 (2.7) stan-
dard deviations (s.d.). To turn the local into a global p-value, a number Ntrial of pseudo-data
from the input distributions of the background model to the maximum likelihood fit is created.
For each mass hypothesis in consideration, a fit of the signal model to these pseudo-data is
performed and the fraction of cases, where the outcome of these fits with the maximal signifi-
cance exceeds the observed significance, with respect to Ntrial is determined. Finally, the local
p-value is reduced by this fraction. The best fit value of the product of the cross section with the
branching fraction for the decay into t leptons is sggf B(f ! tt) = (5.8± 2.5

2.0)pb. The excess at
mf = 100 GeV exhibits a p-value of 50% (58%) for the compatibility across tt final states (data-
taking years). Within the resolution of mtt this coincides with a similar excess observed in a
previous search for low-mass resonances by the CMS Collaboration in the gg final state, where
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Figure 10: Expected and observed 95% CL upper limits on the product of the cross sections
and branching fraction for the decay into t leptons for (left) ggf and (right) bbf production
in a mass range of 60  mf  3500 GeV, in addition to H(125). The expected median of the
exclusion limit in the absence of signal is shown by the dashed line. The dark green and bright
yellow bands indicate the central 68% and 95% intervals for the expected exclusion limit. The
black dots correspond to the observed limits. The peak in the expected ggf limit emerges from
the loss of sensitivity around 90 GeV due to the background from Z/g⇤ ! tt events.

CMS Collaboration, JHEP 07 (2023), 073
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up- and down-type fermions) and gauge bosons. In several models, like the MSSM models
discussed in Section 2.2, the f couplings to down-type fermions are enhanced with respect
to the expectation for an SM Higgs boson of the same mass, while the couplings to up-type
fermions and vector bosons are suppressed. This makes down-type fermion final states, such
as tt , particularly interesting for searches for neutral Higgs bosons in addition to H(125). An
enhancement in the couplings to down-type fermions also increases the bbf production cross
section relative to ggf, which is another characteristic signature of these models and motivates
the search for enhanced production cross sections in this production mode with respect to the
SM expectation. In a first interpretation of the data, which is meant to be as model independent
as possible, we search for f production via the ggf and bbf processes in a range of 60  mf 

3500 GeV, where mf denotes the hypothesized f mass. Diagrams for these processes are shown
in Fig. 1. In a second, more specific interpretation of the data, we search for nonresonant tt
production in a model with vector leptoquarks. Finally, in a third interpretation of the data,
we survey the parameter space of two indicative benchmark scenarios of the MSSM, which
predict multiresonance signatures, one of which is associated with H(125). The most important
characteristics of the vector leptoquark model and the MSSM are described in the following.
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Figure 1: Diagrams for the production of neutral Higgs bosons f (left) via gluon fusion, labelled
as ggf, and (middle and right) in association with b quarks, labelled as bbf in the text. In the
middle diagram, a pair of b quarks is produced from the fusion of two gluons, one from each
proton. In the right diagram, a b quark from one proton scatters from a gluon from the other
proton. In both cases f is radiated off one of the b quarks.
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Clearly the pheno is rich and varied based on the specific values of  
and other new interactions.

tan β

Today’s talk will focus on the  contribution, and in particular the 
contributions from the top, where we will use an EFT to go to NNLO. 

ggA

We therefore dont want a super large coupling to bottoms or a very heavy 
pseudoscalar 
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The results are based on the proton-proton (pp) collision data collected at the LHC during the
years 2016–2018, at

p
s = 13 TeV, by the CMS experiment. The data correspond to an integrated

luminosity of 138 fb�1. The analysis is performed in four tt final states: eµ, eth, µth, and
thth, where e, µ, and th indicate t decays into electrons, muons, and hadrons, respectively.
For this analysis the most significant backgrounds are estimated from data, which includes
all SM processes with two genuine t leptons in the final state, and processes where quark- or
gluon-induced jets are misidentified as th, denoted as jet ! th.

The paper is organized as follows. Section 2 gives an overview of the phenomenology of the
BSM physics scenarios under consideration. Section 3 describes the CMS detector, and Section 4
describes the event reconstruction. Section 5 summarizes the event selection and categorization
used for the extraction of the signal. The data model and systematic uncertainties are described
in Sections 6 and 7. Section 8 contains the results of the analysis. Section 9 briefly summarizes
the paper. A complete set of tabulated results of this search for all tested mass hypotheses is
available in the HEPData database [46].

2 Signal models
Neutral (pseudo)scalar bosons f appear in many extensions of the SM. They may have different
couplings to the upper and lower components of the SU(2)L fermion fields (associated with
up- and down-type fermions) and gauge bosons. In several models, like the MSSM models
discussed in Section 2.2, the f couplings to down-type fermions are enhanced with respect
to the expectation for an SM Higgs boson of the same mass, while the couplings to up-type
fermions and vector bosons are suppressed. This makes down-type fermion final states, such
as tt , particularly interesting for searches for neutral Higgs bosons in addition to H(125). An
enhancement in the couplings to down-type fermions also increases the bbf production cross
section relative to ggf, which is another characteristic signature of these models and motivates
the search for enhanced production cross sections in this production mode with respect to the
SM expectation. In a first interpretation of the data, which is meant to be as model independent
as possible, we search for f production via the ggf and bbf processes in a range of 60  mf 

3500 GeV, where mf denotes the hypothesized f mass. Diagrams for these processes are shown
in Fig. 1. In a second, more specific interpretation of the data, we search for nonresonant tt
production in a model with vector leptoquarks. Finally, in a third interpretation of the data,
we survey the parameter space of two indicative benchmark scenarios of the MSSM, which
predict multiresonance signatures, one of which is associated with H(125). The most important
characteristics of the vector leptoquark model and the MSSM are described in the following.
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Figure 1: Diagrams for the production of neutral Higgs bosons f (left) via gluon fusion, labelled
as ggf, and (middle and right) in association with b quarks, labelled as bbf in the text. In the
middle diagram, a pair of b quarks is produced from the fusion of two gluons, one from each
proton. In the right diagram, a b quark from one proton scatters from a gluon from the other
proton. In both cases f is radiated off one of the b quarks.
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(a) Virtual-Virtual (b) Real-Virtual (c) Real-Real

Figure 1: Representative Feynman diagrams for the production of an A boson with an
additional jet at NNLO.

a series of recent calculations of the production of the scalar Higgs plus jet at Next-to-
Next-to leading order [6–12], no such calculation for pseudoscalar Higgs bosons is available.
Addressing this gap is the primary motivation of our paper.

The NNLO calculations of Higgs plus jet have relied on a series of breakthroughs
over the last decade. For a long time NNLO calculations at hadron colliders involving
final state jets were beyond reach due to the technical complexities of infra-red (IR) limits.
However, over the last ten years dramatic improvements have been made in this regard. Two
popular techniques for dealing with IR singularities include N-jettiness slicing [38, 39] and
antenna subtraction [40–46] and these methods have led to dramatic improvements in the
number of NNLO predictions available. In our calculation, we have taken advantage of the
well-established MCFM [47, 48] framework (which uses N -jettiness slicing) that has been
successfully deployed for many calculations at NNLO, the most relevant for this work being
the calculation of H + j at NNLO [12] and bottom induced Higgs plus jet production [49].

Our paper proceeds as follows. In Section 2 we give a general overview of the calculation,
while a detailed discussion of our two-loop hard function calculation is presented in Section
3, and the calculation of A + 2j at NLO is discussed in Section 4. We discuss the results
of our Monte Carlo implementation of MCFM in Section 5 including the phenomenology
for this process at the 13 TeV LHC. Then, lastly, we draw our conclusions in Section 6. A
series of useful formulae, and a detailed comparison with the H + j calculation, as well as
a description of ancillary files make up a series of Appendices.

2 Overview of the calculation

In this paper we consider the production of a pseudoscalar Higgs boson (A) and an ad-
ditional jet up to NNLO in QCD. Representative Feynman diagrams for this process at
NNLO are shown in Fig. 1 and Fig. 2. In each diagram the A boson couples to partons
through an effective Lagrangian. The effective Lagrangian describing the coupling of the A

boson to gluons (and massless quarks) arises from integrating out the top quark and can
be written as [50]2,

LA
e↵ = �A

h
CGOG(x) + CJOJ(x)

i
, (2.1)

2Note we factored 1
8 and 1

2 in the each Wilson coefficients respectively. See eq.(2.2) in [51].

– 3 –

Taking the mass of the top to infinity introduces the effective Lagrangian 
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The results are based on the proton-proton (pp) collision data collected at the LHC during the
years 2016–2018, at

p
s = 13 TeV, by the CMS experiment. The data correspond to an integrated

luminosity of 138 fb�1. The analysis is performed in four tt final states: eµ, eth, µth, and
thth, where e, µ, and th indicate t decays into electrons, muons, and hadrons, respectively.
For this analysis the most significant backgrounds are estimated from data, which includes
all SM processes with two genuine t leptons in the final state, and processes where quark- or
gluon-induced jets are misidentified as th, denoted as jet ! th.

The paper is organized as follows. Section 2 gives an overview of the phenomenology of the
BSM physics scenarios under consideration. Section 3 describes the CMS detector, and Section 4
describes the event reconstruction. Section 5 summarizes the event selection and categorization
used for the extraction of the signal. The data model and systematic uncertainties are described
in Sections 6 and 7. Section 8 contains the results of the analysis. Section 9 briefly summarizes
the paper. A complete set of tabulated results of this search for all tested mass hypotheses is
available in the HEPData database [46].

2 Signal models
Neutral (pseudo)scalar bosons f appear in many extensions of the SM. They may have different
couplings to the upper and lower components of the SU(2)L fermion fields (associated with
up- and down-type fermions) and gauge bosons. In several models, like the MSSM models
discussed in Section 2.2, the f couplings to down-type fermions are enhanced with respect
to the expectation for an SM Higgs boson of the same mass, while the couplings to up-type
fermions and vector bosons are suppressed. This makes down-type fermion final states, such
as tt , particularly interesting for searches for neutral Higgs bosons in addition to H(125). An
enhancement in the couplings to down-type fermions also increases the bbf production cross
section relative to ggf, which is another characteristic signature of these models and motivates
the search for enhanced production cross sections in this production mode with respect to the
SM expectation. In a first interpretation of the data, which is meant to be as model independent
as possible, we search for f production via the ggf and bbf processes in a range of 60  mf 

3500 GeV, where mf denotes the hypothesized f mass. Diagrams for these processes are shown
in Fig. 1. In a second, more specific interpretation of the data, we search for nonresonant tt
production in a model with vector leptoquarks. Finally, in a third interpretation of the data,
we survey the parameter space of two indicative benchmark scenarios of the MSSM, which
predict multiresonance signatures, one of which is associated with H(125). The most important
characteristics of the vector leptoquark model and the MSSM are described in the following.
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Figure 1: Diagrams for the production of neutral Higgs bosons f (left) via gluon fusion, labelled
as ggf, and (middle and right) in association with b quarks, labelled as bbf in the text. In the
middle diagram, a pair of b quarks is produced from the fusion of two gluons, one from each
proton. In the right diagram, a b quark from one proton scatters from a gluon from the other
proton. In both cases f is radiated off one of the b quarks.
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Figure 1: Representative Feynman diagrams for the production of an A boson with an
additional jet at NNLO.

a series of recent calculations of the production of the scalar Higgs plus jet at Next-to-
Next-to leading order [6–12], no such calculation for pseudoscalar Higgs bosons is available.
Addressing this gap is the primary motivation of our paper.

The NNLO calculations of Higgs plus jet have relied on a series of breakthroughs
over the last decade. For a long time NNLO calculations at hadron colliders involving
final state jets were beyond reach due to the technical complexities of infra-red (IR) limits.
However, over the last ten years dramatic improvements have been made in this regard. Two
popular techniques for dealing with IR singularities include N-jettiness slicing [38, 39] and
antenna subtraction [40–46] and these methods have led to dramatic improvements in the
number of NNLO predictions available. In our calculation, we have taken advantage of the
well-established MCFM [47, 48] framework (which uses N -jettiness slicing) that has been
successfully deployed for many calculations at NNLO, the most relevant for this work being
the calculation of H + j at NNLO [12] and bottom induced Higgs plus jet production [49].

Our paper proceeds as follows. In Section 2 we give a general overview of the calculation,
while a detailed discussion of our two-loop hard function calculation is presented in Section
3, and the calculation of A + 2j at NLO is discussed in Section 4. We discuss the results
of our Monte Carlo implementation of MCFM in Section 5 including the phenomenology
for this process at the 13 TeV LHC. Then, lastly, we draw our conclusions in Section 6. A
series of useful formulae, and a detailed comparison with the H + j calculation, as well as
a description of ancillary files make up a series of Appendices.

2 Overview of the calculation

In this paper we consider the production of a pseudoscalar Higgs boson (A) and an ad-
ditional jet up to NNLO in QCD. Representative Feynman diagrams for this process at
NNLO are shown in Fig. 1 and Fig. 2. In each diagram the A boson couples to partons
through an effective Lagrangian. The effective Lagrangian describing the coupling of the A

boson to gluons (and massless quarks) arises from integrating out the top quark and can
be written as [50]2,

LA
e↵ = �A

h
CGOG(x) + CJOJ(x)

i
, (2.1)

2Note we factored 1
8 and 1

2 in the each Wilson coefficients respectively. See eq.(2.2) in [51].

– 3 –

Taking the mass of the top to infinity introduces the effective Lagrangian (a) f = ggg (b) f = qq̄g

Figure 2: Representative OJ Feynman diagrams which contribute at NNLO.

where the operators are defined as

OG(x) = Gµ⌫
a G̃a,µ⌫ ⌘ ✏µ⌫⇢�G

µ⌫
a G⇢�

a , OJ(x) = @µ
�
 ̄�µ�5 

�
. (2.2)

The Wilson coefficients CG and CJ are obtained by integrating out the top quark loops and
are defined as follows:

CG = �↵s

2⇡

1

v

✓
1

8

◆
, when tan� ⇠ 1 (2.3)

CJ = �
⇣↵s

2⇡

⌘ CF

4

✓
3

2
� 3 ln

µ2
R

m2
t

◆
+

⇣↵s

2⇡

⌘2
C(2)
J + · · ·

�
CG . (2.4)

The Adler-Bardeen theorem [52] constraints the higher order corrections to CG, in our
calculation we need CJ expanded to O(↵2

s). The CJ operator is one order higher in ↵s

than CG and as such the contributions from this operator are simpler and correspond to
one-loop boxes. The full complexities of the NNLO calculation are therefore felt in the CG

piece of the calculation. It is interesting to note that the tree-level contribution from the
CJ pieces (i.e. the right hand diagram in Fig. 2 without the loop gluon) enter at O(✏).
Therefore as ✏ ! 0 there is no contribution from CJ at O(↵4

s), but these pieces do play a
role in correctly performing the renormalization at NNLO.

The topologies presented in Fig. 1 are examples of double-virtual (2-loop), real-virtual
(1-loop) and real-real (tree-level) corrections which appear at O(↵2

s) in perturbation theory.
Each topology individually contains copious infra-red (IR) singularities which cancel only
upon combinations of the sub-topologies into IR-safe observables. Over the last decade
significant progress has been achieved on regulating IR divergences. In our calculation we
will employ the N -jettiness slicing method [38, 39]. This proceeds by defining the 1-jettiness
observable as follows:

⌧1 =
X

j=1,m

min
i

⇢
2qi · pj
Qi

�
, (2.5)

where the index j runs over the momenta of all partons pj while qi represents a momenta
of the jet-clustered phase space. For small values of ⌧1 (defined by ⌧ cut1 ) a factorization
theorem exists from Soft-Collinear-Effective-Theory (SCET) [53, 54]:

�(⌧1  ⌧ cut1 ) =

Z ⌧cut1

0
d⌧1

0

@S ⌦ J ⌦
Y

a=1,2

Ba ⌦H

1

A+ F(⌧ cut1 ), (2.6)

– 4 –

Specifically, 
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Figure 1: Representative Feynman diagrams for the production of an A boson with an
additional jet at NNLO.
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well-established MCFM [47, 48] framework (which uses N -jettiness slicing) that has been
successfully deployed for many calculations at NNLO, the most relevant for this work being
the calculation of H + j at NNLO [12] and bottom induced Higgs plus jet production [49].

Our paper proceeds as follows. In Section 2 we give a general overview of the calculation,
while a detailed discussion of our two-loop hard function calculation is presented in Section
3, and the calculation of A + 2j at NLO is discussed in Section 4. We discuss the results
of our Monte Carlo implementation of MCFM in Section 5 including the phenomenology
for this process at the 13 TeV LHC. Then, lastly, we draw our conclusions in Section 6. A
series of useful formulae, and a detailed comparison with the H + j calculation, as well as
a description of ancillary files make up a series of Appendices.

2 Overview of the calculation

In this paper we consider the production of a pseudoscalar Higgs boson (A) and an ad-
ditional jet up to NNLO in QCD. Representative Feynman diagrams for this process at
NNLO are shown in Fig. 1 and Fig. 2. In each diagram the A boson couples to partons
through an effective Lagrangian. The effective Lagrangian describing the coupling of the A

boson to gluons (and massless quarks) arises from integrating out the top quark and can
be written as [50]2,
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The two Wilson coefficients are known to sufficiently high orders in  for our 
purposes 
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The Adler-Bardeen theorem [52] constraints the higher order corrections to CG, in our
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than CG and as such the contributions from this operator are simpler and correspond to
one-loop boxes. The full complexities of the NNLO calculation are therefore felt in the CG
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Therefore as ✏ ! 0 there is no contribution from CJ at O(↵4

s), but these pieces do play a
role in correctly performing the renormalization at NNLO.

The topologies presented in Fig. 1 are examples of double-virtual (2-loop), real-virtual
(1-loop) and real-real (tree-level) corrections which appear at O(↵2

s) in perturbation theory.
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upon combinations of the sub-topologies into IR-safe observables. Over the last decade
significant progress has been achieved on regulating IR divergences. In our calculation we
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observable as follows:
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where the index j runs over the momenta of all partons pj while qi represents a momenta
of the jet-clustered phase space. For small values of ⌧1 (defined by ⌧ cut1 ) a factorization
theorem exists from Soft-Collinear-Effective-Theory (SCET) [53, 54]:
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Higgs and Pseudoscalar are kind of the same 

H

<latexit sha1_base64="KiCPZsN2aBs/0cGFdsbFzzc54Nk=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHYNRo9ELxwhkUcCGzI79MLI7OxmZtaEEL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj+7nffkKleSwfzCRBP6JDyUPOqLFSo9YvltyyuwBZJ15GSpCh3i9+9QYxSyOUhgmqdddzE+NPqTKcCZwVeqnGhLIxHWLXUkkj1P50ceiMXFhlQMJY2ZKGLNTfE1MaaT2JAtsZUTPSq95c/M/rpia89adcJqlByZaLwlQQE5P512TAFTIjJpZQpri9lbARVZQZm03BhuCtvrxOWldlr1K+blRK1bssjjycwTlcggc3UIUa1KEJDBCe4RXenEfnxXl3PpatOSebOYU/cD5/AKARjNQ=</latexit>

While the pseudoscalar is a 
hypothetical state with a broad 
range of phenomenological 
possibilities, it has a rather well 
known cousin. 

At many points in this talk we’ll 
leverage the vast knowledge of the 
H(125) to complete/check/simplify 
our results. 
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which satisfy 0 < x < 1, 0 < y < 1, 0 < z < 1, and x + y + z = 1 (for decay kinematics).
In order to obtain predictions for the collider production of an A boson with an additional
jet, the decay amplitudes must be crossed to generate the relevant partons in the initial
state, this alters the allowed regions in (x, y, z) space, which we will discuss shortly. We
note that the calculation for the decay kinematics A ! 3 partons has been considered in
the literature [? ]. Although to allow for an efficient mechanism of generating the crossed
process we have re-calculated the 2-loop amplitudes independently. However, where possible
we try to maintain the notation from [? ] to facilitate an easy comparison, whenever we
deviate from the notation in the literature we will mention it3.

3.2 Calculation

We now discuss the calculation of the amplitudes up to two-loop order. The effective
Lagrangian contains both ✏µ⌫⇢� and �5 which are inherently four-dimensional objects. Care
must therefore be taken when calculating using the dimensional regulator d = 4 � 2✏. We
proceed as follows, �5 is defined as

�5 =
i

4!
"µ⌫⇢��

µ�⌫�⇢�� , (3.2)

"µ1⌫1⇢1�1 "
µ2⌫2⇢2�2 =

���������

�
µ2
µ1

�
⌫2
µ1

�
⇢2
µ1

�
�2
µ1

�
µ2
⌫1 �

⌫2
⌫1 �

⇢2
⌫1 �

�2
⌫1

�
µ2
⇢1 �

⌫2
⇢1 �

⇢2
⇢1 �

�2
⇢1

�
µ2
�1

�
⌫2
�1

�
⇢2
�1

�
�2
�1

���������

(3.3)

where all the Lorentz indices are d-dimensional [? ]. This is commonly referred to as
the Larin prescription. While being straightforward to implement in d dimensions, the
above definition fails to satisfy the Ward identities, and therefore an additional, finite,
renormalization of �5 is required in order to restore the Ward Identity.

Aside from the issues with �5 there are additional complications arising from operator
mixing. The essential details of the UV renormalization procedure are well summarized
in Refs. [? ? ], here for brevity we provide a brief overview and we refer the reader to
the literature for further details. We renormalize the bare strong coupling constant by
performing the replacement

↵̂s ! ↵s S✏ Z↵ , (3.4)

with S✏ =
exp (✏�E)
(4⇡)✏ , ↵s ⌘ ↵s(µR) at the renormalization scale µR which keeps the coupling

constant dimensionless in d = 4� 2✏. The renormalization factors are given by

Z↵ = 1 +

⇣↵s

2⇡

⌘
r1 +

⇣↵s

2⇡

⌘2
r2 +O(↵3

s) , (3.5)

where explicit formula for the terms r1, r2 are defined in Appendix A. After coupling
renormalization the sub-amplitudes for the two operators O⇤=G and O⇤=J for each process
f = ggg, qq̄g are written as,

M⌃,(0)
f = M̂⌃,(0)

f , (3.6)
3For instance, we note that t $ u and y $ z in [? ].
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Higgs and Pseudoscalar are kind of NOT the same 

A closer look at the pictures does reveal a rather non trivial difference between 
the two, our old friend γ5
Famously  does not play nicely with dimensional regulation since its inherently 
a four-dimensional object. 

γ5

No free lunch here, we follow the Larin prescription where 

and

This provides a clean implementation in d-dimensions, but violates the Ward 
identity. This is restored through a (finite) renormalization of γ5
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A (brief and incomplete) list of Higgs and A + jets predictions 
SM Higgs Pseudo-Higgs

h@NLO:

[Dawson. (91)],

[Djouadi, Spira, Zerwas. (91)]

h+jet@NLO:

[Ravindran, Smith, Neerven. (02)]

h@NNLO:

[Harlander, Kilgore. (02)],

[Anastasiou, Melnikov. (02)],

[Ravindran, Smith, Neerven. (03)]

h+2jet@NLO:

[Campbell, Ellis, CW (10)]

h+jet@NNLO:

[Boughezal,Caola,Melnikov, Petriello,Schulze. (13)],

[Chen,Gehrmann,Glover,Jaquier. (15)],

[Boughezal,Caola,Melnikov,Petriello,Schulze. (15)],

[Boughezal,Focke,Giele,Liu,Petriello.(15)],

[F. Caola, K. Melnikov and M. Schulze.(15)],

[Chen, Martinez,Gehrmann, Glover, Jaquier. (16)]

[Campbell, Ellis, Seth (19)]

h@N3LO:

[Anastasiou, Duhr, Dulat, Herzog, Mistlberger. (15)],

[Anastasiou,Duhr,Dulat,Furlan,Gehrmann,Herzog,

Lazopoulos, Mistlberger. (16)]

 A@NLO:
[Kauffman, Schaffer. (94)]

A+jet@NLO:

[Field, Smith, Yeomans. (03)]

A@NNLO:

[Harlander, Kilgore. (02)]

[Anastasiou, Melnikov. (03)],

[Ravindran, Smith, Neerven. (03)]

A+2jet@NLO:

[Demartin, Maltoni, Kentarou, Page, Zaro. (14)]

A@N3LO(partially, based on h@N3LO):

[Ahmed, Kumar, Mathews, Rana, Ravindran. (16)],

[Ahmed, Bonvini, Kumar, Mathews, Rana, Ravindran, Rottoli. 
(16)]

A+jet@NNLO This talk!
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A+j at NNLO 

The aim of this talk is to present the results for A+j @ NNLO ( ), for which we 
have two types of topologies, those from  (above) and  (below)*

𝒪(α5
s )

OG OJ

*Of course the operators annoyingly mix under renormalization at this order causing a huge headache, but I’ll suppress that for narrative flow… 
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The subtraction scheme fails when final state jets are present at LO, 
since then there is no separation of the doubly and singly unresolved 
regions based on qT

We need a resolution parameter which separates out the regions, but 
works for final state jets too! 

Doubly unresolved Singly  unresolved
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The subtraction scheme fails when final state jets are present at LO, 
since then there is no separation of the doubly and singly unresolved 
regions based on qT

We need a resolution parameter which separates out the regions, but 
works for final state jets too! 

Doubly unresolved Singly  unresolved

in the relativistic kinematics, is taken in the on-shell scheme. This scheme allows one to
take the limit mOS

b
! 0 while keeping the Yukawa coupling non-zero. This scheme has two

advantages in QCD calculations. Firstly, it allows for a robust definition of the 5FS for
H + b amplitudes. Secondly, by evolving the scale in the running Yukawa coupling to µR

(i.e. mH), one avoids large logarithms which arise in the OS scheme at higher orders, and
as a result the perturbative corrections are under better control. Downsides of the mixed
scheme include breaking the relationship between the OS mass and the MS mass [53, 54]
and an inability to consistently renormalize higher-order corrections in the electroweak cou-
pling [31]. Nevertheless, the reduction in sensitivity to collinear initial-state logarithms (at
the cost of a strong dependence on the factorization scale at LO), and the ability to pursue
higher-order corrections, renders the 5FS along with the mixed renormalization scheme a
very useful theoretical construct for LHC computations.

2.2 Technical details

For the bottom-induced H + j process at NNLO, three phase-space topologies contribute
(see fig. 1), corresponding to the double-virtual, real-virtual, and double-real corrections to
the underlying LO topology. UV and IR singularities are present at this order and must be
appropriately renormalized and regulated. We describe the calculation of the various UV-
renormalized matrix elements for each phase-space configuration in ref. [55] for the decay
H ! bbj at NNLO. This leaves the discussion of the IR regulation, which is different from
that described in ref. [55] due to the LHC kinematics.

In order to regulate the IR divergences present at this order we use the N -jettiness
slicing approach [56, 57]. This method has become an established technique for evaluating
NNLO cross sections involving final-state jets at the LHC [51, 57–59], and we provide a
brief overview in this section. The central idea is to separate the (differential) cross section
of a process into two pieces,

�NNLO = �(⌧N  ⌧ cutnj
) + �(⌧N > ⌧ cutnj

) , (2.1)

where the variable ⌧N is the N -jettiness variable [60]. For our 1-jet example, this variable
is defined as

⌧1 =
X

m

mini
2pm · ki

Pi

, (2.2)

where {pm} is the set of all partonic momenta in an event, while {ki} are the momenta of
the two incoming beams and the hardest jet present in the event (after clustering). The
quantity Pi is a somewhat arbitrary choice of hard scale, and in our calculation we take
Pi = 2Ei (known as the geometric measure [61, 62]). The above-cut term �(⌧N > ⌧ cutnj

) has
sufficiently large value of the N -jettiness variable to have at most one unresolved parton, and
therefore corresponds to a NLO computation of the cross section with an additional parton
present. The below-cut term �(⌧N  ⌧ cutnj

) contains all of the double-unresolved limits at
NNLO. However, in the limit ⌧ cut

1
! 0 the cross section can be approximated using the

– 5 –

Idea behind a slicing approach is to split the phase space into two 
based on some suitable variable 

Should contain all double unresolved limits, 
and be accessible via simplified result (i.e. 
factorization theorem) 

Should contain at most singly unresolved limits, 
(i.e. an NLO + extra parton) directly compute 
with suitable Monte Carlo codes

Slicing @ NNLO
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N-jettiness slicing 

We use the N-jettiness event shape variable (Stewart, Tackmann Waalewijn 09) to 
split the regions

21

The subtraction scheme fails when final state jets are present at LO, 
since then there is no separation of the doubly and singly unresolved 
regions based on qT

We need a resolution parameter which separates out the regions, but 
works for final state jets too! 

Doubly unresolved Singly  unresolved

21

The subtraction scheme fails when final state jets are present at LO, 
since then there is no separation of the doubly and singly unresolved 
regions based on qT

We need a resolution parameter which separates out the regions, but 
works for final state jets too! 

Doubly unresolved Singly  unresolved

in the relativistic kinematics, is taken in the on-shell scheme. This scheme allows one to
take the limit mOS

b
! 0 while keeping the Yukawa coupling non-zero. This scheme has two

advantages in QCD calculations. Firstly, it allows for a robust definition of the 5FS for
H + b amplitudes. Secondly, by evolving the scale in the running Yukawa coupling to µR

(i.e. mH), one avoids large logarithms which arise in the OS scheme at higher orders, and
as a result the perturbative corrections are under better control. Downsides of the mixed
scheme include breaking the relationship between the OS mass and the MS mass [53, 54]
and an inability to consistently renormalize higher-order corrections in the electroweak cou-
pling [31]. Nevertheless, the reduction in sensitivity to collinear initial-state logarithms (at
the cost of a strong dependence on the factorization scale at LO), and the ability to pursue
higher-order corrections, renders the 5FS along with the mixed renormalization scheme a
very useful theoretical construct for LHC computations.

2.2 Technical details

For the bottom-induced H + j process at NNLO, three phase-space topologies contribute
(see fig. 1), corresponding to the double-virtual, real-virtual, and double-real corrections to
the underlying LO topology. UV and IR singularities are present at this order and must be
appropriately renormalized and regulated. We describe the calculation of the various UV-
renormalized matrix elements for each phase-space configuration in ref. [55] for the decay
H ! bbj at NNLO. This leaves the discussion of the IR regulation, which is different from
that described in ref. [55] due to the LHC kinematics.

In order to regulate the IR divergences present at this order we use the N -jettiness
slicing approach [56, 57]. This method has become an established technique for evaluating
NNLO cross sections involving final-state jets at the LHC [51, 57–59], and we provide a
brief overview in this section. The central idea is to separate the (differential) cross section
of a process into two pieces,

�NNLO = �(⌧N  ⌧ cutnj
) + �(⌧N > ⌧ cutnj

) , (2.1)

where the variable ⌧N is the N -jettiness variable [60]. For our 1-jet example, this variable
is defined as

⌧1 =
X

m

mini
2pm · ki

Pi

, (2.2)

where {pm} is the set of all partonic momenta in an event, while {ki} are the momenta of
the two incoming beams and the hardest jet present in the event (after clustering). The
quantity Pi is a somewhat arbitrary choice of hard scale, and in our calculation we take
Pi = 2Ei (known as the geometric measure [61, 62]). The above-cut term �(⌧N > ⌧ cutnj

) has
sufficiently large value of the N -jettiness variable to have at most one unresolved parton, and
therefore corresponds to a NLO computation of the cross section with an additional parton
present. The below-cut term �(⌧N  ⌧ cutnj

) contains all of the double-unresolved limits at
NNLO. However, in the limit ⌧ cut

1
! 0 the cross section can be approximated using the
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•  - Soft function (for 3 partons) (Boughezal Liu Petriello 15, Campbell Ellis Mondini CW 17) 


•  ,  - Jet and beam functions (collinear behavior) (Becher Bell 10, Gaunt Stahlhofen 

Tackmann 14) 


•  - Hard function - process specific finite function.

𝒮

𝒥i ℬa

ℋ

following factorization theorem from Soft-Collinear Effective Field Theory (SCET):

�(⌧  ⌧ cutnj
) =

Z
⌧
cut
nj

0

d⌧

0

@S ⌦
njY

i=1

Ji ⌦
Y

a=1,2

Ba ⌦H

1

A+ F(⌧ cutnj
), (2.3)

where in our case nj = 1. The above equation is valid up to power corrections (denoted by
the F(⌧ cutnj

) term), which vanish in the limit ⌧ cutnj
! 0. At NLO the leading power corrections

are well described by the form ⌧ cutnj
log(⌧ cutnj

/Q), and at NNLO the leading power corrections
have the form ⌧ cutnj

log3(⌧ cutnj
/Q) (where in both cases Q is the hard scale associated with

the process). The general terms that enter the SCET factorization theorem are the soft
(S), jet (J ), and beam (B) functions, for which calculations accurate to O(↵2

s) needed for
our calculation can be found in refs. [63–68].

There are several alternative choices [51, 59] one can make when applying the jettiness-
slicing method. Firstly, one can choose whether to work with a fixed version of ⌧ cut

1
, in which

all events are compared to a given energy scale, or with a dynamical definition, in which
the final-state kinematics (of the clustered system) generates different ⌧ cut

1
values for each

phase-space point. Typically, for 1-jet NNLO processes it is more prudent to use the latter
option. Since power corrections are sensitive to the overall hardness of the system through
the expansion parameter ⌧ cut

1
/Q, very energetic jets have suppressed power corrections. By

using a fixed ⌧ cut
1

, the calculation for these terms includes points that are very soft and
collinear (relative to the hard scale), resulting in large Monte Carlo uncertainties and code
instabilities. On the other hand, using a dynamic ⌧ cut

1
ensures a more relaxed ⌧ cut

1
for more

energetic jets, reducing this problem and producing more stable results, without increasing
the impact of unwanted power corrections.

In order to obtain the remaining process-specific hard function (H) appearing in eq. (2.3),
we use our double-virtual calculation for the decay amplitude H ! bbg presented in
ref. [55]1. The result for LHC kinematics is obtained by performing the relevant crossing,
moving the desired final-state partons to the initial state. In practical terms, this involves
taking the appropriate analytic continuation of the various harmonic polylogarithms that
appear in the virtual amplitudes as described in section 4 of ref. [70]. After crossing the
relevant final-state partons to the initial state, we have checked that our results have the
correct factorization properties in the relevant soft and collinear limits [71, 72], finding
excellent agreement.

2.3 Matching to the EFT

The Standard Model does not allow for the consideration of the impact of a single fermion
generation in isolation. For the purposes of this calculation, in order to completely specify
our theoretical framework we must also address the role of the top quark in the computation.
This is because at O(↵3

s) the cross section becomes sensitive to the presence of the top
induced production. One must therefore specify whether one works in the effective field
theory or full Standard Model. Precision calculations in the full Standard Model are made

1See also ref. [69].

– 6 –

To compute the below-cut piece we can use the following 
factorization theorem, derived from SCET 

At  the various pieces needed are : 𝒪(α2
s )

SCET factorization
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H+j at NNLO  (in MCFM)

Throughout our calculation we will make extensive use of the corresponding 
Higgs plus jet result implemented into MCFM, presented in Campbell, Ellis, Seth 19. 

This calculation (based upon Boughezal, Focke, Giele, Liu, Petriello 15) uses N-jettiness 
slicing and (Campbell, Ellis, Seth 19)  provides a detailed comparison with other 
existing methods based on Antenna subtraction and Sector decomposition. 

The one sentence summary is that it’s hard to get the slicing parameter small enough 
to exactly match Antenna subtraction results, but using finite  and performing a fit 
results in excellent agreement between methods. 

τ1

Using slicing for the (putative) pseudoscalar phenomenology is therefore 
reasonable. 



Calculation 
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Two-loop Hard Function 
A calculation for  partons exists (Banerjee, Dhani, Ravidran 17), but since we needed to 
cross it for LHC kinematics we did a fully independent calculation. (Re)calculated 
Higgs amplitudes too as a cross check. 

A → 3

Initial diagram generation and Feynman rules done with 
two independent implementations. 
Diagrams then reduced to MI’s via LiteRed (Lee 14) + Kira (Maierhöfer Usovitsch, Uwer 18)


Then starting from initial decay kinematics we cross partons to the initial state 
using the coproduct method (Duhr 12 & 14). 

We checked each crossing numerically using AMFlow (Liu, Ma 22)

Then UV renormalization ( and operator mixing ), then extraction of IR poles 
through Catani’s operator. 

αs, γ5,
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Collinear test of the two-loop hard function. 

+ (3.67559)↵2
s ,

Re
⇣
MJ,ren

qq̄!Ag M
G⇤,ren
qq̄!Ag +MG,ren

qq̄!Ag M
J⇤,ren
qq̄!Ag

⌘
= 0 + (0)↵s + (0.12870)↵2

s ,

Re
⇣
MJ,ren

qq̄!Ag M
J⇤,ren
qq̄!Ag

⌘
= (0) + (0)↵s + (0)↵2

s ,

(3.26)

• qg-channel:

Re
⇣
MG,ren

qg!Ag M
G⇤,ren
qg!Ag

⌘
= �1.96610 + (�16.4889)↵s

+ (�77.2028)↵2
s ,

Re
⇣
MJ,ren

qg!Ag M
G⇤,ren
qg!Ag +MG,ren

qg!Ag M
J⇤,ren
qg!Ag

⌘
= 0 + (0)↵s + (�0.49802)↵2

s ,

Re
⇣
MJ,ren

qg!Ag M
J⇤,ren
qg!Ag

⌘
= (0) + (0)↵s + (0)↵2

s . (3.27)

We note that the above results have not been normalized by the leading order results.

3.4 Factorization properties of the two-loop amplitude

As this section has detailed, the calculation of the second order hard function is quite intri-
cate and involves several distinct stages. Through diagram generation, reduction to MI’s,
the definition of a UV finite amplitude, extraction of IR poles, evaluation and analytically
continuing the decay amplitudes to the scattering region. Therefore it is natural to search
for methods of validating the correctness of our approach. In this section we outline the
checks which we have performed on our result, which correspond to testing the IR singular
limits of our calculation against the know factorization properties of QCD [? ? ].

A particularly good test is the collinear limit [? ], we consider the two cases for
f = ggg, qq̄g separately. For the f = ggg case, we consider a phase space point in which
one of the gluons (g = g(p3)) becomes collinear to an another gluon (g = g(p1)), as a result
of which the invariant t vanishes which means y ! 0 while x, z 6= 0. For the f = qq̄g

case, we consider phase space point where the qq pair becomes collinear, and as such the
invariant s vanishes which means x ! 0 while y, z 6= 0. The collinear limit at two loops
reads:

M̂G,(2)
f M̂G,(0)⇤

f ! C(2)
f = P (0)

f · M̂G,(2)
A!ggM̂

G,(0)⇤
A!gg

+ P (1)
f · M̂G,(1)

A!ggM̂
G,(0)⇤
A!gg

+ P (2)
f · M̂G,(0)

A!ggM̂
G,(0)⇤
A!gg . (3.28)

The splitting functions P (`)
f (y, z) and required amplitudes MG,(`)

A!ggM
G,(0)⇤
A!gg for ` = 0, 1, 2

are given in Appendix B. We compared our result for M̂G,(2)
f M̂G,(0)⇤

f as a series in ✏ with
C(2)
f . We multiply both expressions by a factor of x or y to remove the leading divergence.

The numerical results are displayed in table 1. We observe excellent agreement between
our result and the known collinear limit. Additionally we also investigated the soft limit

– 10 –

Coefficient y C(2)
ggg y M̂G,(2)

ggg M̂G,(0)⇤
ggg xC(2)

qq̄g xM̂G,(2)
qq̄g M̂G,(0)⇤

qq̄g

✏�4
1.20981960 · 106 1.20981960 · 106 4.05026555 · 102 4.05026555 · 102

✏�3
1.58228295 · 107 1.58228295 · 107 �2.59019027 · 103 �2.59019027 · 103

✏�2
2.36283980 · 108 2.36283980 · 108 �1.20976857 · 104 �1.20976857 · 104

✏�1
2.58965014 · 109 2.58966527 · 109 5.16726263 · 104 5.16726262 · 104

✏0 2.19247701 · 1010 2.19253448 · 1010 2.38532152 · 105 2.38475465 · 105

Table 1: Numerical comparison between our two-loop results and the known collinear
limit at phase space points (y, z) = (10

�10, 0.23) and (x, z) = (10
�10, 0.23) for f = ggg, qq̄g

respectively with µR = mA = 125GeV. For readability here we have only presented the
real part, although we note that we have found excellent agreement for the imaginary part
also.

p3 ! 0 for f = ggg by following the procedure outlined in section 8. of Ref. [? ] finding
excellent agreement, we note this check is much more intricate for f = qq̄g case due to the
effective operator structure, so we did not pursue it here.

3.5 Comparison with existing results

As a further check of our results, we can compare our calculation for the squared amplitudes
for M⇤,(`),fin

f up to ` = 2 with the existing results in the literature [? ], for decay kinematics.
We have performed this check and we have found that at tree- and one-loop level our two
calculations are perfectly in agreement. The two-loop level comparisons are non-trivial. We
begin by taking account of the following differences in notation;

SG,(2)
q Eq.(2.32) in [? ] $

✓
1

8

◆�2✓
1

2

◆�2
"
2Re

⇣
MG,(2)

qq̄g MG,(0)⇤
qq̄g

⌘
+MG,(1)

qq̄g MG,(1)⇤
qq̄g

#

(3.29)

SG,(2)
g Eq.(2.30) in [? ] $

✓
1

8

◆�2✓
1

2

◆�2
"
2Re

⇣
MG,(2)

ggg MG,(0)⇤
ggg

⌘
+MG,(1)

ggg MG,(1)⇤
ggg

#

(3.30)

where the factors (1/8)�2 and (1/2)�2 are due to the different definitions of the La-
grangian (2.1) and expansion in units of ↵s/2⇡ versus of ↵s/4⇡ as in [? ]. Our results should
be expanded with a factor (�1)

�2✏ before comparison due to our convention µ2
R = m2

A as
opposed to the choice µ2

= �m2
A in the literature result. Also, note that we normalized

the amplitudes by Born color factor CACF , 2C2
ACF for f = qq̄g, ggg respectively as in

the literature. After making these adjustments we have found perfect agreement with the
literature results for the case f = qq̄g, and for the case f = ggg we found perfect agreement
after a couple of minor typographical errors were fixed in Ref. [? ]4.

4We thank the authors of [? ] for assistance with this comparison.
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We checked against the known collinear limits of two-loop QCD amplitudes (Badger, 

Glover 04)  in order to further validate our result. 

Also able to confirm our results with the literature (Banerjee, Dhani, Ravidran 17) for decay 
kinematics 
Also fully reproduced H+j 2-loop amplitudes too (Gehrmann, Jaquier, Glover, Koukoutsakis 11)
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Above Cut: A+2j@NLO with C.S

Dipole sub. terms; 

Universal;

RV radiation;

Process specific. Calculated 
using generalized unitarity 

RR radiation;

obtained compact 
expressions with BCFW  
recursion 

C.S insertion OP.; 

Universal

Dipole subtraction. [Catani, Seymour. (97)]
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Calculation of the real-virtual terms

[Dixon, Glover, Khoze. 04],

[Badger, Glover 06],

[Dixon, Sofianatos 09],

[Badger, Glover, Mastrolia, C.W 10],

[Badger, Campbell, Ellis, C.W.  09]
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Validation of the Above Cut

MCFM

GOSAM

MadGraph

Agreed!
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Checking A+2j@NLO

�II �IF �FI �FF

gg flux, �(�=1)=7.68771 pb

-0.005

0.000

0.005

� i
j

�II �IF �FI �FF

qqb flux, �(�=1)=60.5352 fb

-0.005

0.000

0.005

� i
j

�II �IF �FI �FF

qg flux, �(�=1)=1.49729 pb

-0.005

0.000

0.005

� i
j

�II �IF �FI �FF

qbg flux, �(�=1)=472.909 fb

-0.005

0.000

0.005
� i

j

�II �IF �FI �FF

qq flux, �(�=1)=122.366 fb

-0.005

0.000

0.005

� i
j

�II �IF �FI �FF

qbqb flux, �(�=1)=17.4485 fb

-0.005

0.000

0.005

� i
j

compact analytic expressions. All the amplitudes present in the calculation have been
checked against Madgraph [? ] and GOSAM [? ] at random phase space points, finding
excellent agreement.

The regularization of IR singularities present in the above-cut region has been per-
formed using the dipole subtraction method [? ]. In the dipole method there are user-
defined “↵ parameters” [? ] which determine the amount of (non-singular) phase space
integrated over by the subtraction counter-terms. An advantage of the method is that each
type of dipole has a unique unphysical parameter which can be varied individually. If the
cancellation has proceeded correctly the individual real and virtual phase spaces depend
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procedure described in Ref. [? ] we define the following quantities
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proceed to calculate the cross sections using the following phase space requirements
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anti�kT , no explicit cut on rapidities . (4.5)

Our results for the ↵-(in)dependence are presented in Fig. 3, where we have broken down
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separately. In all cases excellent agreement is obtained with ✏ab = 0 within the (sub)per-
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In summary we have calculated all helicity amplitudes at one-loop level for A + 4

partons and tree-level for A + 5 partons and implemented the results into MCFM. We
have checked the validity of the individual amplitudes against Madgraph, and performed
intricate tests of the dipole cancellation. We are therefore in position to put the above cut
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process [? ] where possible. In order to facilitate a comparison with the production of a
scalar Higgs we introduce the following phase space selection requirements;
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As a final check of our above cut 
contribution we can test the dipole 
cancelation across the two phase 
spaces by varying the unphysical 
“alpha” parameters associated with 
each dipole configuration. 
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The first thing to do, is to check the 
dependence on the 1-jettiness cut at NLO, 
and compare to the dipole result. 

Figure 3: The dependence of the A + 2j cross-section on the ↵ parameters, for each
partonic channel. The points represent the deviation from ↵ab = 1 to 10

�2. The cross-
sections obtained at default parameters (↵ab = 1), are indicated in the plots. The horizontal
lines represent the uncertainty on a fit of the results to a constant. The plots show excellent
↵-independence within the MC uncertainty range.

pjetT > 30 GeV, anti�kT algorithm, �R = 0.4 , (5.3)
PDF set : PDF4LHC15_nnlo_30 . (5.4)

We note that these cuts match those used to study various NNLO calculations of H + j at
NNLO in Refs. [? ? ? ? ]. We will use these cuts throughout this section.

5.1 Validation

We begin by validating our calculation. Since the SCET-based factorization theorem for
the below cut pieces neglects power suppressed terms, a natural check is to ensure that the
Monte Carlo code can be run in a manner within the on-set of asymptotic behavior. We
use the same definition for ⌧ cut

1 as Ref. [? ] namely:

⌧ cut
1 = ✏⇥

r
m2

A +

⇣
pj1T

⌘2
. (5.5)

Typically we will draw values of ✏ from the range, 2.5 ⇥ 10
�5  ✏  5 ⇥ 10

�4. It has
been shown [? ] that if the N -jettiness variable is evaluated in the so-called boosted frame
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Asymptotic behavior is confirmed and the 
two results are in perfect agreement, 
writing, 

Figure 4: ⌧ -dependence of the total NLO cross section, �NLO. The plot is made in the
boosted frame. The blue solid line corresponds to the fitted curve from in Eq. (5.6), with
the blue zone representing the errors from the fitted result. The dipole subtraction is shown
as the black dashed line.

(corresponding to the rest frame of the Higgs-jet final state system) the resulting dependence
on the unphysical parameter ⌧ cut

1 is softened, and asymptotic behavior is reached sooner.
Therefore in this paper we evaluate the 1-jettiness in the boosted frame.
The parametric form of the leading power corrections are well known and have the following
structure

�NLO(✏) = �0
NLO + c0✏ log(✏) + · · · , (5.6)

��NNLO(✏) = ��0
NNLO + c0✏ log

3
(✏) + · · · , (5.7)

where ✏ is defined through Eq. (5.5). In Fig. 4 we present the results for the A + j cross
section at NLO using the default set of cuts. Shown in the figure is the result obtained
using dipole subtraction (as the dashed line), the results from our calculation, and a fit
to the results as described above. Using our parametric fit one can extract the following
results

�0
NLO = 31.674± 0.022 pb , (5.8)

�dipole
NLO = 31.675± 0.031 pb . (5.9)

which show the excellent agreement between the two methodologies at NLO accuracy. We
turn our attention to the NNLO coefficient in Fig. 5. Again the results from our calculation
are well modelled by the parametric fit (Eq. (5.7)). Performing the fit described above

– 15 –

Figure 4: ⌧ -dependence of the total NLO cross section, �NLO. The plot is made in the
boosted frame. The blue solid line corresponds to the fitted curve from in Eq. (5.6), with
the blue zone representing the errors from the fitted result. The dipole subtraction is shown
as the black dashed line.

(corresponding to the rest frame of the Higgs-jet final state system) the resulting dependence
on the unphysical parameter ⌧ cut

1 is softened, and asymptotic behavior is reached sooner.
Therefore in this paper we evaluate the 1-jettiness in the boosted frame.
The parametric form of the leading power corrections are well known and have the following
structure

�NLO(✏) = �0
NLO + c0✏ log(✏) + · · · , (5.6)

��NNLO(✏) = ��0
NNLO + c0✏ log

3
(✏) + · · · , (5.7)

where ✏ is defined through Eq. (5.5). In Fig. 4 we present the results for the A + j cross
section at NLO using the default set of cuts. Shown in the figure is the result obtained
using dipole subtraction (as the dashed line), the results from our calculation, and a fit
to the results as described above. Using our parametric fit one can extract the following
results

�0
NLO = 31.674± 0.022 pb , (5.8)

�dipole
NLO = 31.675± 0.031 pb . (5.9)

which show the excellent agreement between the two methodologies at NLO accuracy. We
turn our attention to the NNLO coefficient in Fig. 5. Again the results from our calculation
are well modelled by the parametric fit (Eq. (5.7)). Performing the fit described above

– 15 –

We find
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Validation at NNLO 

Validation at NNLO is trickier, since we have to extract 
the  limit while fighting rising MC uncertainties. ϵ → 0
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Defining, 

We find, 

Figure 5: ⌧ -dependence of ��NNLO using our default set of cuts. The blue solid line
corresponds to the fit form in Eq. (5.7), with the shaded blue color band representing the
fitting errors.

allows to extract the coefficient in the ⌧ cut
1 ! 0 limit, obtaining:

��0
NNLO = 6.435± 0.083 pb . (5.10)

The general ⌧ cut1 dependence of the NNLO coefficient is unsurprisingly almost identical to
that reported in the calculation of H+ j [? ]. While the asymptotic limit is harder to reach
due to the more intricate NNLO phase space, as ✏ ⇠ 2 � 3 ⇥ 10

�5 the results agree with
the limit within the reported uncertainties. We therefore take these values as within the
asymptotic region and used ✏ = 2.5 ⇥ 10

�5 as our default value for the phenomenological
studies in the next section.

5.2 Phenomenology

In this section we explore the phenomenology of psuedoscalar Higgs plus jet production at
NNLO. We keep the same fiducial selection criteria described in the previous section. NNLO
predictions shown in this section are calculated using ✏ = 2.5⇥10

�5 with the boosted ⌧ defi-
nition. In our predictions we take µF = µR = mA as a central scale choice. We then perform
a six-point scale variation i.e. we compute distributions taking the extremeums from the set
(µR/mA, µF /mA) = (↵,�) where (↵,�) 2 {(1, 2), (1, 1/2), (1/2, 1), (2, 1), (2, 2), (1/2, 1/2)}
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With agreement between fitting and MC 
uncertainties in the region 

 ϵ ∼ 2 − 3 × 10−5
More physical;

But computationally more 

expensive and unstable
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Cross section as a function of mass 

We begin by studying the 
cross section as a function of 
pseudoscalar mass through 
NNLO

As expected from the scalar Higgs 
case, the NLO to NNLO ratio is 
sizable (around 1.2) 

Scale variation is also notable 
reduced as expected. 
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Transverse momentum 

Next we turn to  differential qualities, 
setting on =125 GeV to provide a clean 
analog of the scalar Higgs case. 

mA

The correction from NLO -> NNLO is 
pretty similar to that observed in the 
Higgs case. The “Sudkov shoulder” at 
NLO is partly filled in by the NNLO 
corrections. 

We get access to the  pieces at 
NNLO, they come in around 0.5% and 
are fairly flat across the phase space

OJ
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Rapidity with  GeV mA = 125

We also produced the distribution for the 
Higgs rapidity. Again for  GeV.mA = 125

Here the NNLO corrections follow a 
similar pattern to NLO in that they are 
fairly flat but significantly decrease the 
scale variation. 

Again the  pieces are pretty small, 
effecting the cross section around the 
0.5% level. 

OJ
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Conclusions 
• We presented a NNLO calculation of a pseudo scalar produced in association with an additional jet. 


• We calculated all of the relevant amplitudes for the two- and one-loop as well as the tree-level 
result and were able to test our amplitudes in all cases. All amplitudes + Higgs checks are publicly 
available. 


• We used N-jettiness slicing to regulate the IR divergences. 


• We produced some initial phenomenological studies to quantify the impact of the NNLO corrections 
and produce total cross sections at this order. 


• A natural future study would be to include the decays and to work in a more specific model related 
to tie into and update LHC constraints.  
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UV-Renormalization

Strong coupling renormalization: Operator renormalizations:
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UV-renormalized amplitudes in terms of bare amplitudes.

Compare to the SM Higgs case: CJ interfered amplitudes play important roles in UV-renormalization. 
Note all finite terms of CJ tree-level are zero while there are terms from 

. These higher order terms participate in UV-renormalization.Ο(𝜖)
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Distributions @ 700 GeV


